TOP Contributors

  1. MIKROE (2664 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137141 times)
  2. FAT32 Library (70243 times)
  3. Network Ethernet Library (56133 times)
  4. USB Device Library (46450 times)
  5. Network WiFi Library (42109 times)
  6. FT800 Library (41410 times)
  7. GSM click (29125 times)
  8. mikroSDK (26570 times)
  9. PID Library (26511 times)
  10. microSD click (25507 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

IR Grid 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 74 times

Not followed.

License: MIT license  

IR Grid 3 click is a thermal imaging sensor. It has an array of 768 very sensitive, factory calibrated IR elements (pixels), arranged in 32 rows of 24 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90640ESF-BAA IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "IR Grid 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "IR Grid 3 click" changes.

Do you want to report abuse regarding "IR Grid 3 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


IR Grid 3 click

IR Grid 3 click is a thermal imaging sensor. It has an array of 768 very sensitive, factory calibrated IR elements (pixels), arranged in 32 rows of 24 pixels, each measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90640ESF-BAA IR sensor used on this Click board™ has only four pins, and it is mounted inside of the industry standard TO39 package.

irgrid3_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : I2C type

Software Support

We provide a library for the IRGrid3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for IRGrid3 Click driver.

Standard key functions :

  • irgrid3_cfg_setup Config Object Initialization function.

    void irgrid3_cfg_setup ( irgrid3_cfg_t *cfg );
  • irgrid3_init Initialization function.

    err_t irgrid3_init ( irgrid3_t *ctx, irgrid3_cfg_t *cfg );
  • irgrid3_default_cfg Click Default Configuration function.

    void irgrid3_default_cfg ( irgrid3_t *ctx );

Example key functions :

  • irgrid3_generic_write This function reads a desired number of data bytes starting from the selected register by using I2C serial interface.

    void irgrid3_generic_write ( irgrid3_t *ctx, uint16_t reg, uint8_t *data_buf, uint16_t len );
  • irgrid3_get_frame_data This function is used for getting frame data.

    uint16_t irgrid3_get_frame_data ( irgrid3_t *ctx, uint16_t *frame_data );
  • irgrid3_get_pixel_temperature This function is used for getting pixels temperature.

    void irgrid3_get_pixel_temperature ( irgrid3_t *ctx, float *temp_ambient, float *pixel_temp );

Example Description

The demo application displays a reading of ambient temperature and a 32x24 pixel object temperature matrix.

The demo application is composed of two sections :

Application Init

Configures the click and log objects and sets the click default configuration.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    irgrid3_cfg_t irgrid3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    // Click initialization.
    irgrid3_cfg_setup( &irgrid3_cfg );
    IRGRID3_MAP_MIKROBUS( irgrid3_cfg, MIKROBUS_1 );
    err_t init_flag = irgrid3_init( &irgrid3, &irgrid3_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    irgrid3_default_cfg ( &irgrid3 );
    Delay_ms ( 1000 );
    log_info( &logger, "---- Start measurement ----" );
}

Application Task

Reads the temperature of all pixels every 500ms and displays it on USB UART in a form of a 32x24 matrix.


void application_task ( void ) {
    float px_matrix[ 768 ];
    float temp_ambient;

    irgrid3_get_pixel_temperature( &irgrid3, &temp_ambient, px_matrix );

    log_printf( &logger, "\r\n>> Pixel temperature matrix 32x24 <<\r\n" );
    for ( uint16_t cnt = 1 ; cnt < 769 ; cnt++) {
        log_printf( &logger, "%.2f", px_matrix[ cnt - 1 ] );
        if ( ( ( cnt % 32 ) == 0 ) ) {
            log_printf( &logger, "\r\n" );
        } else {
            log_printf( &logger, " | " );
        }
    }
    log_printf( &logger, "\r\n** Ambient (sensor) temperature is %.2f Celsius\r\n", temp_ambient );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IRGrid3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Gyro 7 click

0

Gyro 7 Click is a compact add-on board that contains a high-performance gyroscope. This board features the ICG-1020S, a dual-axis MEMS angular rate sensor (gyroscope) from TDK InvenSense. The ICG-1020S provides extremely low RMS noise as well as noise density. The high-resolution gyroscope supports a full-scale programmable range of ±46.5dps to ±374dps, a fast sample rate at up to 32kHz, an SPI serial interface, and extremely low power consumption. This Click board™ is designed for optical image stabilization (OIS) applications.

[Learn More]

Color 7 click demo example

0

This example is made to demonstrate the operation of the Color 7 click.

[Learn More]

Microwave 6 click

0

Microwave 6 Click is a compact add-on board that utilizes the Doppler Shift Phenomenon to sense motion. This board features the PD-V8-S, a high-frequency microwave sensor from Ningbo Pdlux Electronic Technology. The transmitter on this transceiver works on a 5.8GHz frequency over the patch antenna, with a 2-3kHz pulse repetition frequency. The strength of the sensor’s output, in other words, the detection range, depends on the Signal-to-Noise ratio.

[Learn More]