TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137044 times)
  2. FAT32 Library (70168 times)
  3. Network Ethernet Library (56043 times)
  4. USB Device Library (46365 times)
  5. Network WiFi Library (41981 times)
  6. FT800 Library (41313 times)
  7. GSM click (29080 times)
  8. mikroSDK (26520 times)
  9. PID Library (26454 times)
  10. microSD click (25449 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LDC click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-04

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Inductance

Downloaded: 105 times

Not followed.

License: MIT license  

LDC Click is a compact add-on board that measures inductance change which a conductive target causes when it moves into the inductor's AC magnetic field.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LDC click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LDC click" changes.

Do you want to report abuse regarding "LDC click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LDC click

LDC Click is a compact add-on board that measures inductance change which a conductive target causes when it moves into the inductor's AC magnetic field.

ldc_click.png

click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the LDC Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LDC Click driver.

Standard key functions :

  • ldc_cfg_setup Config Object Initialization function.

    void ldc_cfg_setup ( ldc_cfg_t *cfg );
  • ldc_init Initialization function.

    err_t ldc_init ( ldc_t *ctx, ldc_cfg_t *cfg );
  • ldc_default_cfg Click Default Configuration function.

    err_t ldc_default_cfg ( ldc_t *ctx );

Example key functions :

  • ldc_get_interrupt Get interrupt pin status.

    uint8_t ldc_get_interrupt ( ldc_t *ctx );
  • ldc_get_frequency Get frequency value calculated for specific channel.

    err_t ldc_get_frequency ( ldc_t *ctx, uint8_t channel, uint16_t divider, float *frequency );
  • ldc_calculate_inductance Calculate inductance relative to frequency.

    float ldc_calculate_inductance ( float frequency );

Example Description

This example showcases abillity of the device to detect metal objects. It configures device for reading data from channel 0, checks if ID's are OK and reads data when interrupt is asserted and logs result.

The demo application is composed of two sections :

Application Init

Initialization of communication modules (I2C, UART) and additional pins. Then configures the device for reading data from channel 0, and checks if device ID's are correctly read, and read the currently set divider.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ldc_cfg_t ldc_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ldc_cfg_setup( &ldc_cfg );
    LDC_MAP_MIKROBUS( ldc_cfg, MIKROBUS_1 );
    err_t init_flag = ldc_init( &ldc, &ldc_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    if ( ldc_default_cfg ( &ldc ) < 0 )
    {
        log_error( &logger, " Default configuration. " );
        for ( ; ; );
    }

    uint16_t temp_data = 0;
    ldc_generic_read( &ldc, LDC_REG_MANUFACTURER_ID, &temp_data );
    log_printf( &logger, "> Manufacturer ID: 0x%.4X\r\n", temp_data );
    if ( LDC_MANUFACTURER_ID != temp_data )
    {
        log_error( &logger, " Manufacturer ID. " );
        for ( ; ; );
    }

    ldc_generic_read( &ldc, LDC_REG_DEVICE_ID, &temp_data );
    log_printf( &logger, "> Device ID 0x%.4X\r\n", temp_data );
    if ( LDC_DEVICE_ID != temp_data )
    {
        log_error( &logger, " Device ID. " );
        for ( ; ; );
    }

    ldc_generic_read( &ldc, LDC_REG_CLOCK_DIVIDERS_CH0, &temp_data );
    divider = temp_data & 0x3FF;

    log_info( &logger, " Application Task " );
}

Application Task

Checks if interrupt pin is asserted, if so reads data from channel 0. Calculates and returns the frequency of the sensor. If the frequency is greater than 0, then it calculates the inductance of the sensor. It will log error and error values if it occurred.


void application_task ( void ) 
{
    if ( !ldc_get_interrupt( &ldc ) )
    {
        float frequency = 0.0;
        float inductance = 0.0;
        uint16_t status = 0;
        ldc_generic_read( &ldc, LDC_REG_STATUS, &status );
        if ( status & LDC_STATUS_DRDY )
        {
            err_t ret_val = ldc_get_frequency( &ldc, LDC_REG_DATA_CH0, divider, &frequency );
            if ( !ret_val )
            {
                log_printf( &logger, "> Freq[MHz]: %.3f\r\n", frequency );
                if ( frequency > 0 )
                {
                    inductance = ldc_calculate_inductance( frequency );
                }
                log_printf( &logger, "> L[uH]: %.3f\r\n", inductance );
                log_printf( &logger, "> ************************\r\n" );

                Delay_ms ( 500 );
            }
            else
            {
                log_error( &logger, " Reading data: %ld", ret_val );
            }
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LDC

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB UART 2 click

0

USB UART 2 click provides USB isolation and carries the ADUM4160BRWZ USB port isolator. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over UART interface, with additional functionality provided the following pins on the mikroBUS™ line: RST, CS, PWM, INT.

[Learn More]

IR Grid 3 click

5

IR Grid 3 click is a thermal imaging sensor. It has an array of 768 very sensitive, factory calibrated IR elements (pixels), arranged in 32 rows of 24 pixels, each measuring an object temperature up to 300ËšC within its local Field of View (FOV).

[Learn More]

RS232 click

5

Simple example which demonstrates working with RS232 click board in mikroBUS form factor. This code demonstrates how to use uart library routines. Upon receiving data via RS232, MCU immediately sends it back to the sender.

[Learn More]