TOP Contributors

  1. MIKROE (2659 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136995 times)
  2. FAT32 Library (70112 times)
  3. Network Ethernet Library (56027 times)
  4. USB Device Library (46347 times)
  5. Network WiFi Library (41964 times)
  6. FT800 Library (41286 times)
  7. GSM click (29053 times)
  8. mikroSDK (26489 times)
  9. PID Library (26447 times)
  10. microSD click (25413 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ISM RX 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 115 times

Not followed.

License: MIT license  

ISM RX 3 Click is a compact add-on board that contains a Sub-GHz RF receiver. This board features the MAX41470, a high-performance, low-power receiver ideal for amplitude shift-keyed (ASK) and frequency shift-keyed (FSK) data from Maxim Integrated, now part of Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ISM RX 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ISM RX 3 click" changes.

Do you want to report abuse regarding "ISM RX 3 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


ISM RX 3 click

ISM RX 3 Click is a compact add-on board that contains a Sub-GHz RF receiver. This board features the MAX41470, a high-performance, low-power receiver ideal for amplitude shift-keyed (ASK) and frequency shift-keyed (FSK) data from Maxim Integrated, now part of Analog Devices.

ismrx3_click.png

click Product page


Click library

  • Author : Luka FIlipovic
  • Date : Feb 2021.
  • Type : SPI type

Software Support

We provide a library for the ISMRX3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for ISMRX3 Click driver.

Standard key functions :

  • ismrx3_cfg_setup Config Object Initialization function.

    void ismrx3_cfg_setup ( ismrx3_cfg_t *cfg );
  • ismrx3_init Initialization function.

    err_t ismrx3_init ( ismrx3_t *ctx, ismrx3_cfg_t *cfg );
  • ismrx3_default_cfg Click Default Configuration function.

    err_t ismrx3_default_cfg ( ismrx3_t *ctx );

Example key functions :

  • ismrx3_reset Reset function.

    void ismrx3_reset( ismrx3_t *ctx );
  • ismrx3_get_data Read data output.

    uint8_t ismrx3_get_data( ismrx3_t *ctx );
  • ismrx3_get_clk Read clock output.

    uint8_t ismrx3_get_clk( ismrx3_t *ctx );

Example Description

This example showcases ability of click board to configure and read incoming rf signal and parses data using data and clock line.

The demo application is composed of two sections :

Application Init

Initialization of communication modules (SPI, UART), and additional communication pins. Resets device, reads device ID, and sets default configuration that sets ASK modulation and 433.92MHz with 5bps data rate.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ismrx3_cfg_t ismrx3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ismrx3_cfg_setup( &ismrx3_cfg );
    ISMRX3_MAP_MIKROBUS( ismrx3_cfg, MIKROBUS_1 );
    err_t init_flag  = ismrx3_init( &ismrx3, &ismrx3_cfg );
    if ( init_flag == SPI_MASTER_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    ismrx3_reset( &ismrx3 );

    uint8_t read_data;
    ismrx3_generic_read( &ismrx3, 0x1E, &read_data );
    log_info( &logger, " > ID: 0x%.2X", ( uint16_t )read_data );
    Delay_ms ( 500 );

    ismrx3.modulation = ISMRX3_MODULATION_ASK;
    ismrx3.reference_freq = ISMRX3_FREQUENCY_MHZ_433p92;
    ismrx3.data_rate = ISMRX3_DATA_RATE_KBPS_5;
    ismrx3.freq_deviation = ISMRX3_DEVIATION_KHZ_40;

    if ( ISMRX3_ERROR == ismrx3_default_cfg ( &ismrx3 ) )
    {
        log_error( &logger, " Configuration Error. " );
        log_info( &logger, " Please, change device configuration parameters and run program again... " );

        for ( ; ; );
    }

    manchester_counter = 0;
    log_info( &logger, " Application Task " );
}

Application Task

Reads clock pin and gets samples of data pin state, converts it in manchester data that stores in buffer. When it fills out manchester buffer checks if expected preamble data is received. If it is checks the next byte(it should be received data length). Then parses rest of data and if it's correct shows it on log.


void application_task ( void )
{    
    if ( ismrx3_get_clk( &ismrx3 ) )
    {
        sample = ismrx3_get_data( &ismrx3 );
        if ( last_sample == sample )
        {
            consecutive++; 
        }
        else
        {
            if ( consecutive < 4 )//Single sample
            {
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
            }
            else if ( consecutive < 6 )//Two samples
            {
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
                manchester_buf[ manchester_counter++ ] = last_sample + 48;//Convert to ascii 1/0
            }
            consecutive = 1;
            last_sample = sample;
        }

        while ( ismrx3_get_clk( &ismrx3 ) );
    }

    if ( manchester_counter >= MANCHESTER_BUF_LEN - 1 )
    {
        parse_samples(  ); 
        manchester_counter = 0;
    }
}

Note

  • The expected data that is received is:

    _PREAMBLEWORD(2bytes), _DATALENGTH(1byte), DATA(1..255bytes)

  • By default _PREAMBLEWORD is set to be 0xAAAA.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ISMRX3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

OptoEncoder 2 click

5

Opto Encoder 2 click is a linear incremental optical sensor/encoder click which can be used for the movement or rotation encoding. Encoders of this type are widely used for many applications, which involve precise detection of the position, speed, or rotational angle of an object.

[Learn More]

LEM click

0

LEM click carries the LTS 6-NP current transducer and MCP3201 ADC converter. The click can measure AC and DC current with exceptional speed, up to 200 KHz.

[Learn More]

Color 3 click

1

Color 3 click is a mikroBUS add-on board with a TCS3771 color sensor (also known as a light-to-digital converter) and a narrow beam Infrared LED. The circuit can also function as a proximity sensor. TCS3771 is a RGBC sensor: it can detect Red, Green, Blue and clear light. The IC performs well under a variety of lighting conditions.

[Learn More]