TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59216 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 16 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 244 times

Not followed.

License: MIT license  

Accel 16 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL363, a micropower three-sensor combination including acceleration and temperature from Analog Devices. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and an analog-to-digital converter (ADC) input for synchronized conversions of external signals.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 16 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 16 Click" changes.

Do you want to report abuse regarding "Accel 16 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Accel 16 Click

Accel 16 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL363, a micropower three-sensor combination including acceleration and temperature from Analog Devices. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and an analog-to-digital converter (ADC) input for synchronized conversions of external signals.

accel16_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Sep 2021.
  • Type : SPI type

Software Support

We provide a library for the Accel16 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Accel16 Click driver.

Standard key functions :

  • accel16_cfg_setup Config Object Initialization function.

    void accel16_cfg_setup ( accel16_cfg_t *cfg );
  • accel16_init Initialization function.

    err_t accel16_init ( accel16_t *ctx, accel16_cfg_t *cfg );
  • accel16_default_cfg Click Default Configuration function.

    err_t accel16_default_cfg ( accel16_t *ctx );

Example key functions :

  • accel16_get_axes Get axes data.

    err_t accel16_get_axes ( accel16_t *ctx, accel16_axes_t *axes );
  • accel16_filter_configuration Filter configuration.

    err_t accel16_filter_configuration ( accel16_t *ctx, accel16_gain_t gain, accel16_output_rate_t odr );
  • accel16_get_temperature Get temperature data.

    err_t accel16_get_temperature ( accel16_t *ctx, float *temperature );

Example Description

This showcases ability of the Click board to read x, y, and z axes data in different resolution, read IC temperature and also have additional functionality to read ADC data. Device also has ability to store data in internal fifo buffer.

The demo application is composed of two sections :

Application Init

Initialization of communication modules(SPI, UART) and additional interrupt pins. Reads device ID's and revision. Then configures device to work in FIFO mode or to read data from the registers, sets 2g resolution, 12.5Hz output data rate, sets interrupt 1 active low, powers on device, and calibrates temperature.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    accel16_cfg_t accel16_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    accel16_cfg_setup( &accel16_cfg );
    ACCEL16_MAP_MIKROBUS( accel16_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == accel16_init( &accel16, &accel16_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    accel16.application_type = ACCEL16_APPLICATION_REG;

    uint8_t temp_buf[ 4 ] = { 0 };

    accel16_multiple_reg_read( &accel16, ACCEL16_REG_DEVID_AD, temp_buf, 4 );
    log_printf( &logger, " > ID0: 0x%.2X\r\n > ID1: 0x%.2X\r\n > ID2: 0x%.2X\r\n > REV: 0x%.2X\r\n", 
                ( uint16_t ) temp_buf[ 0 ], ( uint16_t ) temp_buf[ 1 ], 
                ( uint16_t ) temp_buf[ 2 ], ( uint16_t ) temp_buf[ 3 ] );


    if ( ACCEL16_ERROR == accel16_default_cfg ( &accel16 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Depending of the application mode selects example.

  • If fifo example is selected waits for the interrupt to indicate that data is ready in fifo buffer and reads number of fifo entries. Data that should be read are X, Y, Z axes and temperature.
  • If register example is selected also waits for interrupt to indicate that data is ready to read. Then reads X, Y, Z axes, temperature, and ADC data.

void application_task ( void )
{   
    if ( ACCEL16_APPLICATION_FIFO == accel16.application_type )
    {
        accel16_read_fifo_data( );
    }
    else if ( ACCEL16_APPLICATION_REG == accel16.application_type )
    {
        accel16_read_reg_data( );
    }

    log_printf( &logger, "********************************************************\r\n" );
    Delay_ms ( 300 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel16

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Stepper 21 Click

0

Stepper 21 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8825, a stepper motor controller integral circuit from Texas Instruments. It is a PWM micro-stepping stepper motor driver with up to 1/32 micro-stepping resolution and a built-in micro-stepper indexer. The driver has two H-bridge drivers and is intended to drive a bipolar stepper motor in a voltage supply operating range of 8.2V up to 45V.

[Learn More]

Remote Weather Station with ClickCloud platform

0

The most popular topic with which we all start the day is the weather. You can measure temperature, humidity, ambient lighting and UV and IR indexes in real time, easily, with our Weather Station Kit. Access this data remotely by adding our G2C click–a reliable connection to the Click Cloud platform, a cloud-based rapid prototyping environment.

[Learn More]

EERAM 3v3 Click

0

EERAM 3.3V Click is a static RAM (SRAM) memory Click board™ with the unique feature - it has a backup non-volatile memory array, used to store the data from the SRAM array. Since the SRAM is not able to maintain its content after the power loss, the non-volatile EEPROM backup can be a very handy addition that can be used to preserve the data, even after the power loss event. This is a very useful feature when working with critical or sensitive applications. The memory backup procedure can be executed both automatically and manually. When it is set to work in the manual mode, the onboard capacitor will act as a power source with enough power to complete the backup cycle. The power-on backup restore mode is also available, taking only about 25ms to complete.

[Learn More]