TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142072 times)
  2. FAT32 Library (75298 times)
  3. Network Ethernet Library (59496 times)
  4. USB Device Library (49524 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44918 times)
  7. GSM click (31435 times)
  8. mikroSDK (30452 times)
  9. microSD click (27802 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Watchdog Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 320 times

Not followed.

License: MIT license  

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Watchdog Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Watchdog Click" changes.

Do you want to report abuse regarding "Watchdog Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Watchdog Click

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

watchdog_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2021.
  • Type : GPIO type

Software Support

We provide a library for the Watchdog Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Watchdog Click driver.

Standard key functions :

  • watchdog_cfg_setup Config Object Initialization function.

    void watchdog_cfg_setup ( watchdog_cfg_t *cfg );
  • watchdog_init Initialization function.

    err_t watchdog_init ( watchdog_t *ctx, watchdog_cfg_t *cfg );
  • watchdog_default_cfg Click Default Configuration function.

    err_t watchdog_default_cfg ( watchdog_t *ctx );

Example key functions :

  • watchdog_set_set0 Set S0 ( RST ) pin state function.

    void watchdog_set_set0 ( watchdog_t *ctx, uint8_t set0_state );
  • watchdog_get_wdo Get WDO ( INT ) pin state function.

    uint8_t watchdog_get_wdo ( watchdog_t *ctx );
  • watchdog_send_pulse Send pulse function.

    void watchdog_send_pulse ( watchdog_t *ctx, uint16_t p_duration_ms );

Example Description

This is an example that demonstrates the use of the Watchdog Click board.

The demo application is composed of two sections :

Application Init

Initialization driver enables - GPIO, configure the watchdog window, enable watchdog, also write log.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    watchdog_cfg_t watchdog_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    watchdog_cfg_setup( &watchdog_cfg );
    WATCHDOG_MAP_MIKROBUS( watchdog_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == watchdog_init( &watchdog, &watchdog_cfg ) ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    watchdog_default_cfg ( &watchdog );

    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "   Configure of the  \r\n" );
    log_printf( &logger, "   watchdog window   \r\n" );
    watchdog_setup_time( &watchdog, WATCHDOG_SETUP_TIME_MODE_2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "   Watchdog enabled  \r\n" );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );

    log_info( &logger, " Application Task " );
}

Application Task

In the first part of the example, we send pulses in a valid time window (Correct Operation). The second part of the example sends pulses outside the valid time window and then the watchdog detects a fault condition, display "Fault", performs the reset and turn on the LED ( WDT FLT ) on the Watchdog Click board. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    log_printf( &logger, "  Correct Operation  \r\n" );
    uint8_t n_cnt = 40;
    while ( n_cnt > 0 ) {
        watchdog_send_pulse( &watchdog, 1 );
        Delay_ms ( 50 );
        n_cnt--;
    }
    log_printf( &logger, "---------------------\r\n" );

    log_printf( &logger, "        Fault        \r\n" );
    n_cnt = 8;
    while ( n_cnt > 0 ) {
        watchdog_send_pulse( &watchdog, 1 );
        Delay_ms ( 250 );
        n_cnt--;
    }
    log_printf( &logger, "---------------------\r\n" );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Watchdog

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Expand 4 click

5

This is a sample program that demonstrates the usage of the ST's TPIC6A595 shift register. In this example, the LED pin mask is transferred via SPI bus to the TPIC6A595 shift register and LEDs connected to D0-D7 pins are lit accordingly.

[Learn More]

LDO Click

0

LDO Click is a compact add-on board designed to regulate the output voltage of a power supply to a lower level with a very low dropout voltage. This board features the TPS7A83A, a low-noise, low-dropout linear regulator (LDO) from Texas Instruments capable of sourcing 2A with only 200mV of maximum dropout. The TPS7A8300A has a pin-programmable output voltage from 0.8V-3.95V with a 50mV resolution, or it can be adjustable from 0.8V-5.2V using an external resistor divider.

[Learn More]

DAC 15 Click

0

DAC 15 Click is a compact add-on board that provides a highly accurate digital-to-analog conversion on two channels. This board features the DAC80502, a dual 16-bit 1-LSB INL voltage-output DAC from Texas Instruments. The DAC operates at a wide power supply range and is a low-power device with as low as 1mA per channel at 5.5V. It also includes a 2.5V, 5-ppm/°C internal reference, giving a full-scale voltage buffered output ranges of 1.25V, 2.5V, and 5.5V.

[Learn More]