TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142069 times)
  2. FAT32 Library (75295 times)
  3. Network Ethernet Library (59492 times)
  4. USB Device Library (49524 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44915 times)
  7. GSM click (31432 times)
  8. mikroSDK (30452 times)
  9. microSD click (27802 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

pH Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Environmental

Downloaded: 258 times

Not followed.

License: MIT license  

pH Click is a compact add-on board that provides an opportunity for the user to read pH with the same accuracy and capabilities as with some other expensive solutions. This board features the pH EZO™, a 6th generation embedded pH circuit that offers the highest level of stability and accuracy from AtlasScientific.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "pH Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "pH Click" changes.

Do you want to report abuse regarding "pH Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


pH Click

pH Click is a compact add-on board that provides an opportunity for the user to read pH with the same accuracy and capabilities as with some other expensive solutions. This board features the pH EZO™, a 6th generation embedded pH circuit that offers the highest level of stability and accuracy from AtlasScientific.

ph_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Oct 2021.
  • Type : UART type

Software Support

We provide a library for the pH Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for pH Click driver.

Standard key functions :

  • ph_cfg_setup Config Object Initialization function.

    void ph_cfg_setup ( ph_cfg_t *cfg );
  • ph_init Initialization function.

    err_t ph_init ( ph_t *ctx, ph_cfg_t *cfg );
  • ph_default_cfg Click Default Configuration function.

    err_t ph_default_cfg ( ph_t *ctx );

Example key functions :

  • ph_send_cmd Send command function.

    void ph_send_cmd ( ph_t *ctx, char *p_cmd );
  • ph_get_cmd_resp Send get response function.

    void ph_get_cmd_resp ( ph_t *ctx, char *p_cmd, char *p_resp );
  • ph_switch_led Toggle LED function.

    void ph_switch_led ( ph_t *ctx, uint8_t state, char *p_resp );

Example Description

This example reads and processes data from pH clicks.

The demo application is composed of two sections :

Application Init

Initializes UART driver, performing a factory reset of the device, disabling continuous read, and performing calibration at the midpoint on the pH scale.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ph_cfg_t ph_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ph_cfg_setup( &ph_cfg );
    PH_MAP_MIKROBUS( ph_cfg, MIKROBUS_1 );
    if ( UART_ERROR == ph_init( &ph, &ph_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    ph_factory_rst( &ph, app_buf );
    Delay_ms ( 1000 );

    ph_cont_read( &ph, 0, app_buf );
    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "   -- Initialized --   \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "  Place probe into pH  \r\n" );
    log_printf( &logger, " neutral substance for \r\n" );
    log_printf( &logger, " mid point calibration \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    for ( uint8_t n_cnt = 0; n_cnt < 20; n_cnt++ )
    {
        Delay_ms ( 1000 );
    }
    log_printf( &logger, " Starting calibration  \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    ph_perf_calib ( &ph, PH_CMD_CALIB_MID, 7.000, app_buf );
    Delay_ms ( 1000 );
    log_printf( &logger, " Calibration done!     \r\n" );
    log_printf( &logger, "-----------------------\r\n" );

    log_printf( &logger, " - Application  task -\r\n" );
    log_printf( &logger, "-----------------------\r\n" );
    ph_send_cmd( &ph, PH_CMD_DIS_RSP_CODES );
    Delay_ms ( 1000 );
    ph_clr_log_buf( app_buf );
}

Application Task

This example shows the capabilities of the pH Click board by performing a reading of the pH value of the substance in which the probe is submerged and displaying readings via the USART terminal.


void application_task ( void ) 
{
    ph_send_cmd ( &ph, PH_CMD_SET_SNGL_READ );
    ph_response( &ph, app_buf );
    log_printf( &logger, " pH value: %s ", app_buf );
    log_printf( &logger, "-----------------------\r\n" );
    ph_clr_log_buf( app_buf );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.pH

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Waveform 4 Click

0

Waveform 4 Click is a compact add-on board that represents a high-performance signal generator. This board features the AD9106, a quad-channel, 12-bit, 180MSPS waveform generator, integrating on-chip static random access memory (SRAM) and direct digital synthesis (DDS) for complex waveform generation from Analog Devices. The DDS is up to a 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution.

[Learn More]

I2C Isolator 7 Click

0

I2C Isolator 7 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features the ADuM1252, an ultra-low power, bidirectional I2C isolator from Analog Devices. It can isolate I2C bidirectional data transfer of up to 2MHz SCL and bidirectional SCL for advanced bus topologies, and it supports clock stretching and multiple controllers across the isolation barrier. It also features the enhanced hot-swappable side 2 IO.

[Learn More]

GNSS MAX 2 Click

0

GNSS MAX 2 Click is a compact add-on board designed for precise positioning in urban environments. This board features the MAX-F10S, a professional-grade L1/L5 dual-band GNSS receiver from u-blox. This receiver uses dual-band GNSS technology to provide meter-level accuracy, even in challenging urban areas, by mitigating multipath effects. It supports concurrent GPS, Galileo, and BeiDou constellation tracking, offering robust performance with integrated filters and a low-noise amplifier for protection against RF interference. GNSS MAX 2 Click is ideal for vehicle tracking, fleet management, and micromobility solutions, even with small antennas.

[Learn More]