TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142088 times)
  2. FAT32 Library (75339 times)
  3. Network Ethernet Library (59512 times)
  4. USB Device Library (49530 times)
  5. Network WiFi Library (45315 times)
  6. FT800 Library (44944 times)
  7. GSM click (31454 times)
  8. mikroSDK (30479 times)
  9. microSD click (27806 times)
  10. PID Library (27626 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Turbidity Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Adapter

Downloaded: 402 times

Not followed.

License: MIT license  

Turbidity Click is an adapter Click board™, used to interface a compatible turbidity sensor with the host MCU. This board features one 1x3 2.5mm connector suitable for connecting a TSD-10 Turbidity Sensor via an additional 3-wire cable for Turbidity Click specially made for this purpose. It allows users to upgrade their projects with a sensor that senses the cloudiness or haziness of a fluid caused by large numbers of individual particles invisible to the naked eye. This sensor also measures temperature as well as turbidity.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Turbidity Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Turbidity Click" changes.

Do you want to report abuse regarding "Turbidity Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Turbidity Click

Turbidity Click is an adapter Click board™, used to interface a compatible turbidity sensor with the host MCU. This board features one 1x3 2.5mm connector suitable for connecting a TSD-10 Turbidity Sensor via an additional 3-wire cable for Turbidity Click specially made for this purpose. It allows users to upgrade their projects with a sensor that senses the cloudiness or haziness of a fluid caused by large numbers of individual particles invisible to the naked eye. This sensor also measures temperature as well as turbidity.

turbidity_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2021.
  • Type : I2C type

Software Support

We provide a library for the Turbidity Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Turbidity Click driver.

Standard key functions :

  • turbidity_cfg_setup Config Object Initialization function.

    void turbidity_cfg_setup ( turbidity_cfg_t *cfg );
  • turbidity_init Initialization function.

    err_t turbidity_init ( turbidity_t *ctx, turbidity_cfg_t *cfg );
  • turbidity_default_cfg Click Default Configuration function.

    err_t turbidity_default_cfg ( turbidity_t *ctx );

Example key functions :

  • turbidity_get_ntu Turbidity get NTU function.

    err_t turbidity_get_ntu ( turbidity_t *ctx, float *ntu );
  • turbidity_read_adc Turbidity read ADC function.

    err_t turbidity_read_adc ( turbidity_t *ctx, uint16_t *adc_val );
  • turbidity_get_adc_voltage Turbidity get voltage function.

    err_t turbidity_get_adc_voltage ( turbidity_t *ctx, float *voltage );

Example Description

This library contains API for the Turbidity Click driver. The demo application reads ADC value, ADC voltage and Nephelometric Turbidity Units ( NTU ).

The demo application is composed of two sections :

Application Init

nitialization of I2C module and log UART. After driver initialization, default settings turn on the device.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    turbidity_cfg_t turbidity_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    turbidity_cfg_setup( &turbidity_cfg );
    TURBIDITY_MAP_MIKROBUS( turbidity_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == turbidity_init( &turbidity, &turbidity_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( TURBIDITY_ERROR == turbidity_default_cfg ( &turbidity ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "----------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the Turbidity Click board™. In this example, we monitor and display Nephelometric Turbidity Units ( NTU ). Results are being sent to the Usart Terminal, where you can track their changes.


void application_task ( void ) 
{
    static float ntu;

    turbidity_get_ntu( &turbidity, &ntu );
    log_printf( &logger, "\tNTU : %.2f\r\n", ntu );
    log_printf( &logger, "----------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Turbidity

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Accel 14 click

5

Accel 14 Click is digital acceleration and vibration sensor Click boardâ„¢. It features an ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor, labeled as IIS3DWB, from STMicroelectronics.

[Learn More]

8x8 Y Click

0

8x8 Y Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 Click uses a fast SPI communication protocol, allowing fast display response and no lag.

[Learn More]

TempHum 25 Click

0

Temp&Hum 25 Click is a compact add-on board designed for precise temperature and humidity monitoring. This board features the SHT33-DIS-B2.5KS, a high-reliability, third-generation relative humidity and temperature sensor from Sensirion. This sensor offers exceptional accuracy and reliability, with a range of 0-100% RH and -40 to +125°C, and features ISO17025-certified calibration, CMOSens® technology, and NIST-traceability. The board supports the new Click Snap feature, allowing easy detachment of the sensor area for flexible use.

[Learn More]