TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137116 times)
  2. FAT32 Library (70239 times)
  3. Network Ethernet Library (56131 times)
  4. USB Device Library (46447 times)
  5. Network WiFi Library (42094 times)
  6. FT800 Library (41409 times)
  7. GSM click (29124 times)
  8. mikroSDK (26567 times)
  9. PID Library (26510 times)
  10. microSD click (25491 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 10 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 147 times

Not followed.

License: MIT license  

GNSS 10 Click is a compact add-on board that provides fast positioning capability. This board features the NEO-M8J, a standard precision GNSS module built on the high-performing M8 GNSS engine in the industry-proven NEO form factor from u-blox. This module utilizes concurrent reception of up to three GNSS systems (GPS/Galileo together with BeiDou or GLONASS), recognizes multiple constellations simultaneously, and provides outstanding positioning accuracy in scenarios where urban canyon or weak signals are involved. It supports all satellite augmentation systems for even better and faster positioning improvement, comes with a configurable host interface, and advanced jamming and spoofing detection. This Click board™ is ideally suited for industrial and automotive applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 10 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 10 click" changes.

Do you want to report abuse regarding "GNSS 10 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


GNSS 10 click

GNSS 10 Click is a compact add-on board that provides fast positioning capability. This board features the NEO-M8J, a standard precision GNSS module built on the high-performing M8 GNSS engine in the industry-proven NEO form factor from u-blox. This module utilizes concurrent reception of up to three GNSS systems (GPS/Galileo together with BeiDou or GLONASS), recognizes multiple constellations simultaneously, and provides outstanding positioning accuracy in scenarios where urban canyon or weak signals are involved. It supports all satellite augmentation systems for even better and faster positioning improvement, comes with a configurable host interface, and advanced jamming and spoofing detection. This Click board™ is ideally suited for industrial and automotive applications.

gnss10_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Dec 2021.
  • Type : UART/I2C/SPI type

Software Support

We provide a library for the GNSS 10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 10 Click driver.

Standard key functions :

  • gnss10_cfg_setup Config Object Initialization function.

    void gnss10_cfg_setup ( gnss10_cfg_t *cfg );
  • gnss10_init Initialization function.

    err_t gnss10_init ( gnss10_t *ctx, gnss10_cfg_t *cfg );

Example key functions :

  • gnss10_reset_device This function resets the device by toggling the RST pin.

    void gnss10_reset_device ( gnss10_t *ctx );
  • gnss10_generic_read This function reads a desired number of data bytes from the module.

    err_t gnss10_generic_read ( gnss10_t *ctx, uint8_t *data_out, uint8_t len );
  • gnss10_parse_gngga This function parses the GNGGA data from the read response buffer.

    err_t gnss10_parse_gngga ( char *rsp_buf, uint8_t gngga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 10 click by reading and displaying the GNSS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and resets the click board.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss10_cfg_t gnss10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss10_cfg_setup( &gnss10_cfg );
    GNSS10_MAP_MIKROBUS( gnss10_cfg, MIKROBUS_1 );
    err_t init_flag = gnss10_init( &gnss10, &gnss10_cfg );
    if ( ( UART_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    gnss10_reset_device ( &gnss10 );
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    gnss10_process( &gnss10 );
    if ( app_buf_len > ( sizeof ( GNSS10_RSP_GNGGA ) + GNSS10_GNGGA_ELEMENT_SIZE ) ) 
    {
        gnss10_parser_application( app_buf );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS10

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

16x12 G click

6

16x12 G click carries a 16x12 LED display and the IS31FL3733 matrix driver. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over I2C interface, and the following pins on the mikroBUS line: INT, RST, CS.

[Learn More]

Accel 16 click

0

Accel 16 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL363, a micropower three-sensor combination including acceleration and temperature from Analog Devices. This device combines a 3-axis MEMS accelerometer, a temperature sensor, and an analog-to-digital converter (ADC) input for synchronized conversions of external signals.

[Learn More]

RS232 to I2C click

0

RS232 to I2C Click is a compact add-on board representing a universal usable RS232 to I2C converter. This board features the ZDU0110RFX, a bridge between a UART port and an I2C bus from Zilog, which at the same time represents the connection between the MCU and the RS232 line driver and receiver, the MAX3232. The ZDU0110RFX provides full-duplex asynchronous communications with a 128 byte FIFO buffer, of which 64 bytes each are allocated to receive and transmit operations. It also contains a 4kbit EEPROM and GPIO with programmable interrupt capability; programmable interrupts and interrupt lines for UART and GPIO notifications.

[Learn More]