TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141691 times)
  2. FAT32 Library (74759 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44525 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

TempHum 21 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 229 times

Not followed.

License: MIT license  

Temp&Hum 21 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the HIH8130-021-001, a highly accurate, fully-calibrated digital humidity and temperature sensor from Honeywell Sensing and Productivity Solutions. This sensor, characterized by its high accuracy (±2% RH and ±0.5°C over a wide operating temperature range) and high resolution, provides factory-calibrated 14-bit data to the host controller with a configurable I2C interface. It also comes with alarm features with selectable alarm thresholds by an MCU or externally.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "TempHum 21 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "TempHum 21 Click" changes.

Do you want to report abuse regarding "TempHum 21 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


TempHum 21 Click

Temp&Hum 21 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the HIH8130-021-001, a highly accurate, fully-calibrated digital humidity and temperature sensor from Honeywell Sensing and Productivity Solutions. This sensor, characterized by its high accuracy (±2% RH and ±0.5°C over a wide operating temperature range) and high resolution, provides factory-calibrated 14-bit data to the host controller with a configurable I2C interface. It also comes with alarm features with selectable alarm thresholds by an MCU or externally.

temphum21_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2022.
  • Type : I2C type

Software Support

We provide a library for the TempHum 21 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for TempHum 21 Click driver.

Standard key functions :

  • temphum21_cfg_setup Config Object Initialization function.

    void temphum21_cfg_setup ( temphum21_cfg_t *cfg );
  • temphum21_init Initialization function.

    err_t temphum21_init ( temphum21_t *ctx, temphum21_cfg_t *cfg );

Example key functions :

  • temphum21_read_measurement This function requests measurement and waits for a measurement to complete and after that reads temperature in Celsius and relative humidity in percents.

    err_t temphum21_read_measurement ( temphum21_t *ctx, float *temperature, float *humidity );
  • temphum21_get_all_pin This function returns the alarm low (ALL) pin logic state.

    uint8_t temphum21_get_all_pin ( temphum21_t *ctx );
  • temphum21_get_alh_pin This function returns the alarm high (ALH) pin logic state.

    uint8_t temphum21_get_alh_pin ( temphum21_t *ctx );

Example Description

This example demonstrates the use of Temp & Hum 21 Click board by reading the temperature and humidity data.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    temphum21_cfg_t temphum21_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    temphum21_cfg_setup( &temphum21_cfg );
    TEMPHUM21_MAP_MIKROBUS( temphum21_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == temphum21_init( &temphum21, &temphum21_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( TEMPHUM21_ERROR == temphum21_default_cfg ( &temphum21 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature (Celsius) and humidity (Percents) data and displays the results on the USB UART approximately once per second. It also checks if any alarm is detected on the humidity measurement.

void application_task ( void )
{
    float temperature = 0;
    float humidity = 0;
    if ( TEMPHUM21_STATUS_NORMAL_OP == temphum21_read_measurement ( &temphum21, &temperature, &humidity ) )
    {
        if ( temphum21_get_all_pin ( &temphum21 ) )
        {
            log_info ( &logger, " Alarm LOW detected " );
        }
        else if ( temphum21_get_alh_pin ( &temphum21 ) )
        {
            log_info ( &logger, " Alarm HIGH detected " );
        }

        log_printf ( &logger, " Temperature: %.2f C\r\n", temperature );
        log_printf ( &logger, " Humidity: %.2f %%\r\n\n", humidity );

        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.TempHum21

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LED Driver 11 Click

0

LED Driver 11 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the WLMDU9456001JT (172946001), a fully integrated constant current LED driver with the buck switching regulator and inductor in a single package from Würth Elektronik.

[Learn More]

Charger 26 Click

0

Charger 26 Click is a compact add-on board that provides a single-cell charging solution. This board features the MAX1811, a USB-powered Li+ charger from Analog Devices. The charger uses an internal FET to deliver the battery up to 500mA charging current. It has pre-conditioning that soft-starts a near-dead battery cell before charging.

[Learn More]

RTK Rover Click

0

RTK Rover Click is a compact add-on board that enhances the precision of position data derived from compatible RTK Base Station. This board features Quectel’s LG69TAMMD, a dual-band multi-constellation GNSS module featuring a high-performance and high-reliability positioning engine. This module facilitates a fast and precise GNSS positioning capability for centimeter-level accuracy, featuring the fifth generation of STMicroelectronics® positioning receiver platform with 80 tracking and four fast acquisition channels. It supports up to 3 concurrent global constellations (GPS/QZSS, Galileo, and BDS) alongside NMEA 0183/RTCM 3.x protocol and commonly used UART interface.

[Learn More]