TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142025 times)
  2. FAT32 Library (75253 times)
  3. Network Ethernet Library (59473 times)
  4. USB Device Library (49492 times)
  5. Network WiFi Library (45268 times)
  6. FT800 Library (44880 times)
  7. GSM click (31415 times)
  8. mikroSDK (30402 times)
  9. microSD click (27778 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Charger 17 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 212 times

Not followed.

License: MIT license  

Charger 17 Click is a compact add-on board that provides a single-cell battery charging solution. This board features the RT9471, a 3A single-cell switching battery charger from Richtek. It is a highly-integrated battery charge and system power-path management device for single-cell Li-Ion and Li-Polymer batteries. The high-efficiency 1.5MHz synchronous switch-mode buck charger achieves up to 92% charge efficiency at 2A with 5V input and 3.8V battery.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Charger 17 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Charger 17 Click" changes.

Do you want to report abuse regarding "Charger 17 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Charger 17 Click

Charger 17 Click is a compact add-on board that provides a single-cell battery charging solution. This board features the RT9471, a 3A single-cell switching battery charger from Richtek. It is a highly-integrated battery charge and system power-path management device for single-cell Li-Ion and Li-Polymer batteries. The high-efficiency 1.5MHz synchronous switch-mode buck charger achieves up to 92% charge efficiency at 2A with 5V input and 3.8V battery.

charger17_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2022.
  • Type : I2C type

Software Support

We provide a library for the Charger 17 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Charger 17 Click driver.

Standard key functions :

  • charger17_cfg_setup Config Object Initialization function.

    void charger17_cfg_setup ( charger17_cfg_t *cfg );
  • charger17_init Initialization function.

    err_t charger17_init ( charger17_t *ctx, charger17_cfg_t *cfg );
  • charger17_default_cfg Click Default Configuration function.

    err_t charger17_default_cfg ( charger17_t *ctx );

Example key functions :

  • charger17_enable_charging This function enables charging by setting the CE pin to low logic state.

    void charger17_enable_charging ( charger17_t *ctx );
  • charger17_set_psel_2400mA This function sets charging current to 2400mA by setting the PSEL pin to low logic state.

    void charger17_set_psel_2400mA ( charger17_t *ctx );
  • charger17_read_register This function reads data from the selected register by using I2C serial interface.

    err_t charger17_read_register ( charger17_t *ctx, uint8_t reg, uint8_t *data_out );

Example Description

This example demonstrates the use of Charger 17 Click board by enabling battery charging and displaying the charging status.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which enables charging.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    charger17_cfg_t charger17_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    charger17_cfg_setup( &charger17_cfg );
    CHARGER17_MAP_MIKROBUS( charger17_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == charger17_init( &charger17, &charger17_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( CHARGER17_ERROR == charger17_default_cfg ( &charger17 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays the battery charging status (IC_STATUS and STAT0 regs) on the USB UART approximately once per second.

void application_task ( void )
{
    uint8_t ic_status, status_0;
    if ( CHARGER17_OK == charger17_read_register ( &charger17, CHARGER17_REG_IC_STATUS, &ic_status ) )
    {
        charger17_parse_ic_status ( ic_status );
    }
    if ( CHARGER17_OK == charger17_read_register ( &charger17, CHARGER17_REG_STAT0, &status_0 ) )
    {
        charger17_parse_status_0 ( status_0 );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Charger17

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Heater click

5

Heater Click is designed with intention of PCB heater concept testing and useful tool for heating complete casing where staying in specified temperature range is crucial. Exact PCB temperature can be set and controlled using TMP235 on board temperature sensor from Texas Instruments.

[Learn More]

WIZFI360 Click

0

WIZFI360 Click is a compact add-on board for reliable WiFi connectivity in industrial applications. This board features the WIZFI360, a WiFi module from WIZnet, known for its low power consumption and full compliance with IEEE802.11 b/g/n standards. The board supports SoftAP, Station, and SoftAP+Station modes, operates within the frequency range of 2400MHz to 2483.5MHz, and offers a versatile serial port baud rate of up to 2Mbps. It features WPA_PSK and WPA2_PSK encryption for secure communication, configurable operating channels from 1 to 13, and the ability to handle up to 5 simultaneous TCP/UDP links.

[Learn More]

Charger 6 Click

0

Charger 6 Click is a compact add-on board that represents a single-cell battery charger. This board features the BQ25601, an I2C controlled battery charger for high input voltage and narrow voltage DC power path management from Texas Instruments. This buck charger supports USB, and it’s optimized for USB voltage input. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time, and extends battery life during discharge. It also has a programmable current limiting, allowing it to use an external power supply rated up to 13.5V. This Click board™ is suitable as a Li-Ion and Li-polymer battery charger for portable devices and accessories, power tools, and more.

[Learn More]