TOP Contributors

  1. MIKROE (2658 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136935 times)
  2. FAT32 Library (70058 times)
  3. Network Ethernet Library (56015 times)
  4. USB Device Library (46328 times)
  5. Network WiFi Library (41938 times)
  6. FT800 Library (41263 times)
  7. GSM click (29050 times)
  8. mikroSDK (26458 times)
  9. PID Library (26437 times)
  10. microSD click (25391 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Air Velocity click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Environmental

Downloaded: 56 times

Not followed.

License: MIT license  

Air Velocity Click is a compact add-on board that measures direct airspeed. This board features the FS3000-1005, a surface-mount type air velocity module utilizing a MEMS thermopile-based sensor from Renesas. This I2C-configurable air velocity module features a digital output with a 12-bit resolution with a wide operational range of 0-7.2meter/second (0-16.2mph). The sensor comprises a “solid” thermal isolation technology and silicon-carbide coating to protect it from abrasive wear and water condensation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Air Velocity click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Air Velocity click" changes.

Do you want to report abuse regarding "Air Velocity click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Air Velocity click

Air Velocity Click is a compact add-on board that measures direct airspeed. This board features the FS3000-1005, a surface-mount type air velocity module utilizing a MEMS thermopile-based sensor from Renesas. This I2C-configurable air velocity module features a digital output with a 12-bit resolution with a wide operational range of 0-7.2meter/second (0-16.2mph). The sensor comprises a “solid” thermal isolation technology and silicon-carbide coating to protect it from abrasive wear and water condensation.

airvelocity_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : I2C type

Software Support

We provide a library for the Air Velocity Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Air Velocity Click driver.

Standard key functions :

  • airvelocity_cfg_setup Config Object Initialization function.

    void airvelocity_cfg_setup ( airvelocity_cfg_t *cfg );
  • airvelocity_init Initialization function.

    err_t airvelocity_init ( airvelocity_t *ctx, airvelocity_cfg_t *cfg );

Example key functions :

  • airvelocity_read_output This function reads the raw output counts by using I2C serial interface.

    err_t airvelocity_read_output ( airvelocity_t *ctx, uint16_t *out_counts );
  • airvelocity_convert_counts_to_mps This function converts raw output counts to velocity in m/sec (0-7.23).

    float airvelocity_convert_counts_to_mps ( uint16_t out_counts );

Example Description

This example demonstrates the use of Air Velocity click board by reading and displaying the output counts and air velocity in m/sec.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    airvelocity_cfg_t airvelocity_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    airvelocity_cfg_setup( &airvelocity_cfg );
    AIRVELOCITY_MAP_MIKROBUS( airvelocity_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == airvelocity_init( &airvelocity, &airvelocity_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the output counts and converts it to air velocity in m/sec. Both values will be displayed on the USB UART approximately every 250ms.

void application_task ( void )
{
    uint16_t out_counts;
    if ( AIRVELOCITY_OK == airvelocity_read_output ( &airvelocity, &out_counts ) )
    {
        log_printf ( &logger, " Out counts: %u\r\n", out_counts );
        log_printf ( &logger, " Air velocity: %.2f m/s\r\n\n", airvelocity_convert_counts_to_mps ( out_counts ) );
        Delay_ms ( 250 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AirVelocity

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Altitude click

0

This is a simple example of using MPL3115A2 sensor to calculate the current altitude. Resulting altitude in meters is displayed on the Lcd.

[Learn More]

H-Bridge click

0

H-Bridge click is a high-efficiency dual H-bridge driver Click board™, capable of providing reasonably high current while driving the connected load with up to 7V. Since the used driver IC has two full H-bridge channels, this Click board™ is an ideal solution for driving smaller bipolar stepper motors. H-Bridge click provides driving in both directions, with an addition of the brake mode, and the high impedance mode (Hi-Z). Overshoot current suppression algorithm protects the output stages from being damaged if both high-side and low-side MOSFETs on a single H-bridge channel become conductive.

[Learn More]

Thermo click

0

Example for Thermo click board in mikroBUS form factor. It is a simple demonstration of how to read the temperature from a thermocouple. It uses MAX31855 chip for Thermocouple-to-Digital conversion. Displayed temperature is in degree Celsius.

[Learn More]