TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137040 times)
  2. FAT32 Library (70167 times)
  3. Network Ethernet Library (56041 times)
  4. USB Device Library (46364 times)
  5. Network WiFi Library (41981 times)
  6. FT800 Library (41311 times)
  7. GSM click (29080 times)
  8. mikroSDK (26519 times)
  9. PID Library (26453 times)
  10. microSD click (25449 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Magnetic Rotary 5 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 33 times

Not followed.

License: MIT license  

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Magnetic Rotary 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Magnetic Rotary 5 click" changes.

Do you want to report abuse regarding "Magnetic Rotary 5 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Magnetic Rotary 5 click

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

magneticrotary5_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2022.
  • Type : ADC/GPIO type

Software Support

We provide a library for the Magnetic Rotary 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Magnetic Rotary 5 Click driver.

Standard key functions :

  • magneticrotary5_cfg_setup Config Object Initialization function.

    void magneticrotary5_cfg_setup ( magneticrotary5_cfg_t *cfg );
  • magneticrotary5_init Initialization function.

    err_t magneticrotary5_init ( magneticrotary5_t *ctx, magneticrotary5_cfg_t *cfg );
  • magneticrotary5_default_cfg Click Default Configuration function.

    err_t magneticrotary5_default_cfg ( magneticrotary5_t *ctx );

Example key functions :

  • magneticrotary5_read_angle This function reads the magnetic angle and automatic gain control (AGC) values measured by the sensor.

    err_t magneticrotary5_read_angle ( magneticrotary5_t *ctx, uint8_t *agc, uint16_t *angle );
  • magneticrotary5_read_mt_cnt This function reads the multi turn counter value. With each zero transition in any direction, the output of a special counter is incremented or decremented.

    err_t magneticrotary5_read_mt_cnt ( magneticrotary5_t *ctx, int16_t *mt_cnt );
  • magneticrotary5_read_voltage This function reads raw ADC value and converts it to proportional voltage level.

    err_t magneticrotary5_read_voltage ( magneticrotary5_t *ctx, float *voltage );

Example Description

This example demonstrates the use of Magnetic Rotary 5 click board by reading and displaying the magnet angular position as well as the AGC and multi turn counter values.

The demo application is composed of two sections :

Application Init

Initializes the driver and resets the multi turn counter to zero.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    magneticrotary5_cfg_t magneticrotary5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    magneticrotary5_cfg_setup( &magneticrotary5_cfg );
    MAGNETICROTARY5_MAP_MIKROBUS( magneticrotary5_cfg, MIKROBUS_1 );
    if ( ADC_ERROR == magneticrotary5_init( &magneticrotary5, &magneticrotary5_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( MAGNETICROTARY5_ERROR == magneticrotary5_default_cfg ( &magneticrotary5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the magnet angular position in degrees as well as the voltage from AN pin which is proportional to the angular position. Also reads the AGC and multi turn counter values. The results will be displayed on the USB UART every 100ms approximately.

void application_task ( void )
{
    uint8_t agc = 0;
    uint16_t angle = 0;
    int16_t mt_cnt = 0;
    float voltage = 0;
    if ( MAGNETICROTARY5_OK == magneticrotary5_read_angle ( &magneticrotary5, &agc, &angle ) )
    {
        log_printf ( &logger, "\r\n AGC: %u\r\n Angle: %u\r\n", ( uint16_t ) agc, angle );
    }
    if ( MAGNETICROTARY5_OK == magneticrotary5_read_mt_cnt ( &magneticrotary5, &mt_cnt ) )
    {
        log_printf ( &logger, " Multi turn counter: %d\r\n", mt_cnt );
    }
    if ( MAGNETICROTARY5_OK == magneticrotary5_read_voltage ( &magneticrotary5, &voltage ) ) 
    {
        log_printf( &logger, " AN Voltage : %.3f V\r\n", voltage );
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MagneticRotary5

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

2x2 RGB click

0

2x2 RGB Click is a compact add-on board that contains a matrix of 4 “intelligent” RGB elements, forming a 2x2 display screen. This board features the KTD2052A, a 12-channel RGB LED driver from Kinetic Technologies. It is a fully programmable current regulator for up to four RGB LEDs (12 LEDs in total). The LED matrix consists of four LRTB GFTG, a 6-lead in-line MULTILEDs, from ams OSRAM. The LEDs have a 120-degree viewing angle.

[Learn More]

Mikromedia+ for Stellaris ARM - RF Communication Example

0

This is demonstration project how Mikromedia+ for Stellaris communicate over RF. Data is send over simple 'led protocol' (1 byte command). Development board for Stellaris with an add-on board nRF Click is used as a receiver device.

[Learn More]

Color 5 click

5

Color 5 click is a color sensing Click board, which utilizes the P12347-01CT, integrated color sensing device, which can sense red (R), green (G), and blue (B) component of the light, providing measurement via I2C interface.

[Learn More]