TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137084 times)
  2. FAT32 Library (70225 times)
  3. Network Ethernet Library (56097 times)
  4. USB Device Library (46427 times)
  5. Network WiFi Library (42041 times)
  6. FT800 Library (41382 times)
  7. GSM click (29110 times)
  8. mikroSDK (26558 times)
  9. PID Library (26487 times)
  10. microSD click (25486 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HW Monitor click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 47 times

Not followed.

License: MIT license  

HW Monitor Click is a compact add-on board used to monitor and regulate the performance of various hardware components within an embedded system. This board features the LM96080, an I2C-configurable system hardware monitor from Texas Instruments that contains a 10-bit delta-sigma ADC capable of measuring seven positive voltages and local temperature. The LM96080 also has two programmable fan speed monitoring inputs besides other hardware monitoring functions like chassis intrusion detection, additional external interrupt input, master reset for external purposes, as well as a sequencer that performs watchdog window comparisons of all measured values.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HW Monitor click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HW Monitor click" changes.

Do you want to report abuse regarding "HW Monitor click".

  • Information
  • Comments (0)

mikroSDK Library Blog


HW Monitor click

HW Monitor Click is a compact add-on board used to monitor and regulate the performance of various hardware components within an embedded system. This board features the LM96080, an I2C-configurable system hardware monitor from Texas Instruments that contains a 10-bit delta-sigma ADC capable of measuring seven positive voltages and local temperature. The LM96080 also has two programmable fan speed monitoring inputs besides other hardware monitoring functions like chassis intrusion detection, additional external interrupt input, master reset for external purposes, as well as a sequencer that performs watchdog window comparisons of all measured values.

hwmonitor_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Apr 2023.
  • Type : I2C type

Software Support

We provide a library for the HW Monitor Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for HW Monitor Click driver.

Standard key functions :

  • hwmonitor_cfg_setup Config Object Initialization function.

    void hwmonitor_cfg_setup ( hwmonitor_cfg_t *cfg );
  • hwmonitor_init Initialization function.

    err_t hwmonitor_init ( hwmonitor_t *ctx, hwmonitor_cfg_t *cfg );
  • hwmonitor_default_cfg Click Default Configuration function.

    err_t hwmonitor_default_cfg ( hwmonitor_t *ctx );

Example key functions :

  • hwmonitor_get_analog_inputs HW Monitor gets analog inputs voltage function.

    err_t hwmonitor_get_analog_inputs ( hwmonitor_t *ctx, uint8_t in_pos, float *voltage );
  • hwmonitor_get_temperature HW Monitor gets temperature function.

    err_t hwmonitor_get_temperature ( hwmonitor_t *ctx, float *temperature );
  • hwmonitor_set_config HW Monitor set the configuration function.

    err_t hwmonitor_set_config ( hwmonitor_t *ctx, hwmonitor_config_t config );

Example Description

This example demonstrates the use of the HW Monitor Click board™. The demo application monitors analog voltage inputs and local temperature data.

The demo application is composed of two sections :

Application Init

The initialization of the I2C module, log UART and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hwmonitor_cfg_t hwmonitor_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hwmonitor_cfg_setup( &hwmonitor_cfg );
    HWMONITOR_MAP_MIKROBUS( hwmonitor_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == hwmonitor_init( &hwmonitor, &hwmonitor_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HWMONITOR_ERROR == hwmonitor_default_cfg ( &hwmonitor ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

Application Task

This example displays the Analog Voltage Inputs (IN0-IN6) [mV] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    static float temperature, voltage;
    for ( uint8_t in_pos = 0; in_pos < 7; in_pos++ )
    {
        if ( HWMONITOR_OK == hwmonitor_get_analog_inputs( &hwmonitor, in_pos, &voltage ) )
        {
            log_printf( &logger, "IN %d: %.1f mV\r\n", ( uint16_t ) in_pos, voltage );
            Delay_ms ( 100 );
        }
    }
    log_printf( &logger, "- - - - - - - - - - - - - -\r\n" );
    if ( HWMONITOR_OK == hwmonitor_get_temperature ( &hwmonitor, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.3f [deg c]\r\n", temperature );
        Delay_ms ( 100 );
    }
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HWMonitor

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

OOK TX click

5

OOK TX click is a simple wireless transmitter that operates at the frequency of 433MHz (sub-GHz). This device allows realization of a simple, low-speed wireless ad hoc communication network between a transmitter and compatible receiver, such as the OOK RX click.

[Learn More]

Heart rate 6 click

0

Heart rate 6 Click is an optical biosensor Click board™ designed for heart-rate monitoring (HRM). This Click board™ employs a specialized sensor that incorporates two LED drivers and photo-sensing elements which are the most sensitive to green light.

[Learn More]

LightHz click - Example

5

This project demonstrates working with TSL230RD.
Pulses from TSL230BR are counted using RB0/INT interrupt on rising edge on pin RB0 of PIC18F45K22 MCU. Timer1 generates interrupt after 1/4 second for calculating frequency.

[Learn More]