TOP Contributors

  1. MIKROE (2658 codes)
  2. Alcides Ramos (355 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136935 times)
  2. FAT32 Library (70054 times)
  3. Network Ethernet Library (56013 times)
  4. USB Device Library (46328 times)
  5. Network WiFi Library (41936 times)
  6. FT800 Library (41257 times)
  7. GSM click (29043 times)
  8. mikroSDK (26448 times)
  9. PID Library (26435 times)
  10. microSD click (25391 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

USB MUX click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: USB

Downloaded: 32 times

Not followed.

License: MIT license  

USB MUX Click is a compact add-on board with a high-bandwidth switch designed for switching and isolating high-speed USB 2.0 signals in systems with limited USB I/Os. This board features the TS3USB30E, a USB 2.0 1:2 multiplexer/demultiplexer switch with a single enable from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "USB MUX click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "USB MUX click" changes.

Do you want to report abuse regarding "USB MUX click".

  • Information
  • Comments (0)

mikroSDK Library Blog


USB MUX click

USB MUX Click is a compact add-on board with a high-bandwidth switch designed for switching and isolating high-speed USB 2.0 signals in systems with limited USB I/Os. This board features the TS3USB30E, a USB 2.0 1:2 multiplexer/demultiplexer switch with a single enable from Texas Instruments.

usbmux_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : May 2023.
  • Type : GPIO type

Software Support

We provide a library for the USB MUX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for USB MUX Click driver.

Standard key functions :

  • usbmux_cfg_setup Config Object Initialization function.

    void usbmux_cfg_setup ( usbmux_cfg_t *cfg );
  • usbmux_init Initialization function.

    err_t usbmux_init ( usbmux_t *ctx, usbmux_cfg_t *cfg );
  • usbmux_default_cfg Click Default Configuration function.

    void usbmux_default_cfg ( usbmux_t *ctx );

Example key functions :

  • usbmux_set_oe_pin USB MUX set OE pin output function.

    void usbmux_set_oe_pin ( usbmux_t *ctx, uint8_t pin_state );
  • usbmux_enable_output USB MUX enable output function.

    void usbmux_enable_output ( usbmux_t *ctx );
  • usbmux_set_output USB MUX select output function.

    void usbmux_set_output ( usbmux_t *ctx, uint8_t out_sel );

Example Description

This example demonstrates the use of the USB MUX Click board. This driver provides functions for device configurations and for the selection of the output.

The demo application is composed of two sections :

Application Init

Initialization of the log UART, performing default configuration which disables the output.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    usbmux_cfg_t usbmux_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    usbmux_cfg_setup( &usbmux_cfg );
    USBMUX_MAP_MIKROBUS( usbmux_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == usbmux_init( &usbmux, &usbmux_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    usbmux_default_cfg( &usbmux );

    log_info( &logger, " Application Task " );
    display_selection( );
}

Application Task

Reading user input from UART Terminal and using it for the selection of the output of disabling output of the USB MUX Click board.

void application_task ( void ) 
{
    static char index;

    if ( 1 == log_read( &logger, &index, 1 ) ) 
    {
        switch ( index )
        {
            case ( '0' ):
            {
                log_printf( &logger, " Turning output off. \r\n" );
                usbmux_disable_output( &usbmux );
                break;
            }
            case ( '1' ):
            {
                log_printf( &logger, " USB1 Enabled and selected. \r\n" );
                usbmux_set_output( &usbmux, USBMUX_USB1_SELECT );
                usbmux_enable_output( &usbmux );
                break;
            }
            case ( '2' ):
            {
                log_printf( &logger, " USB2 Enabled and selected. \r\n" );
                usbmux_set_output( &usbmux, USBMUX_USB2_SELECT );
                usbmux_enable_output( &usbmux );
                break;
            }
            default:
            {
                display_selection( );
            }
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.USBMUX

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB HID Demo

0

The application demonstrates USB HID functionality.

[Learn More]

Headphone AMP click

0

Headphone Amp Click is a compact add-on board that contains a stereo headphone amplifier. This board features the LM4811, Boomer® audio power amplifier capable of delivering 105mW per channel with digital volume control from Texas Instruments. The Boomer® amplifiers are specifically designed to provide high-quality output power with a minimal amount of external components. Since the LM4811 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems. It features a digital volume control that sets the amplifier's gain from +12dB to −33dB in 16 discrete steps, in addition to a micro-power consumption Shutdown mode.

[Learn More]

Bluetooth 2 click

0

Example for Bluetooth2 click board in mikroBUS form factor. This expects a message from the Master (Bluetooth dongle, mobile phone, etc) and displays in on the Lcd.

[Learn More]