TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142061 times)
  2. FAT32 Library (75291 times)
  3. Network Ethernet Library (59489 times)
  4. USB Device Library (49519 times)
  5. Network WiFi Library (45287 times)
  6. FT800 Library (44911 times)
  7. GSM click (31427 times)
  8. mikroSDK (30436 times)
  9. microSD click (27797 times)
  10. PID Library (27622 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Zero-Cross Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 254 times

Not followed.

License: MIT license  

Zero-Cross Click is a compact add-on board that has the ability to detect the change from positive to negative or negative to a positive level of a sinusoidal waveform. This board features circuitry that provides Zero Crossing Detection (ZCD). Whenever the sine wave crosses the ground potential, the output shifts from HIGH logic to LOW or vice-versa.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Zero-Cross Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Zero-Cross Click" changes.

Do you want to report abuse regarding "Zero-Cross Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Zero-Cross Click

Zero-Cross Click is a compact add-on board that has the ability to detect the change from positive to negative or negative to a positive level of a sinusoidal waveform. This board features circuitry that provides Zero Crossing Detection (ZCD). Whenever the sine wave crosses the ground potential, the output shifts from HIGH logic to LOW or vice-versa.

zerocross_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : May 2023.
  • Type : GPIO type

Software Support

We provide a library for the Zero-Cross Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Zero-Cross Click driver.

Standard key functions :

  • zerocross_cfg_setup Config Object Initialization function.

    void zerocross_cfg_setup ( zerocross_cfg_t *cfg );
  • zerocross_init Initialization function.

    err_t zerocross_init ( zerocross_t *ctx, zerocross_cfg_t *cfg );

Example key functions :

  • zerocross_pin_read Zero-Cross pin reading function.

    uint8_t zerocross_pin_read ( zerocross_t *ctx );
  • zerocross_get_freq Zero-Cross frequency reading function.

    void zerocross_get_freq ( zerocross_t *ctx, float *freq );

Example Description

This example demonstrates the use of the Zero-Cross Click board.

The demo application is composed of two sections :

Application Init

Initialization of the log UART and basic Click initialisation.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    zerocross_cfg_t zerocross_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    zerocross_cfg_setup( &zerocross_cfg );
    ZEROCROSS_MAP_MIKROBUS( zerocross_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == zerocross_init( &zerocross, &zerocross_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reading frequency value approximately once every second.

void application_task ( void ) 
{
    float freq_val = 0;
    zerocross_get_freq( &zerocross, &freq_val );
    log_printf( &logger, " Freq %.2f Hz \n\r", freq_val );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ZeroCross

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EnOcean Click

0

EnOcean Click carries a TCM 310 transceiver, which is a bidirectional gateway for EnOcean’s 868 MHz radio systems. The Click is designed to run on a 3.3V power supply.

[Learn More]

Motion 3 Click

0

Motion 3 Click is a Click board™ based on EKMC1606112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also featured on Motion 3 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 3 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

[Learn More]

OPTO 4 Click

0

Opto 4 Click is a galvanically isolated power switch, which uses a power MOSFET in combination with an optocoupler.

[Learn More]