TOP Contributors

  1. MIKROE (2662 codes)
  2. Alcides Ramos (357 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137027 times)
  2. FAT32 Library (70152 times)
  3. Network Ethernet Library (56032 times)
  4. USB Device Library (46355 times)
  5. Network WiFi Library (41970 times)
  6. FT800 Library (41297 times)
  7. GSM click (29071 times)
  8. mikroSDK (26509 times)
  9. PID Library (26452 times)
  10. microSD click (25436 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano Power 3 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Linear

Downloaded: 64 times

Not followed.

License: MIT license  

Nano Power 3 Click is a compact add-on board that steps down voltages from its input (supply) to output (load). This board features the RPL-3.0-R, a buck converter with an integrated inductor from Recom Power. This thermally-enhanced converter uses, as input, voltage from 4 up to 18VDC, thus allowing 5V and 12V supply rails to be used.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano Power 3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano Power 3 click" changes.

Do you want to report abuse regarding "Nano Power 3 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Nano Power 3 click

Nano Power 3 Click is a compact add-on board that steps down voltages from its input (supply) to output (load). This board features the RPL-3.0-R, a buck converter with an integrated inductor from Recom Power. This thermally-enhanced converter uses, as input, voltage from 4 up to 18VDC, thus allowing 5V and 12V supply rails to be used.

nanopower3_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : I2C type

Software Support

We provide a library for the Nano Power 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Nano Power 3 Click driver.

Standard key functions :

  • nanopower3_cfg_setup Config Object Initialization function.

    void nanopower3_cfg_setup ( nanopower3_cfg_t *cfg );
  • nanopower3_init Initialization function.

    err_t nanopower3_init ( nanopower3_t *ctx, nanopower3_cfg_t *cfg );
  • nanopower3_default_cfg Click Default Configuration function.

    err_t nanopower3_default_cfg ( nanopower3_t *ctx );

Example key functions :

  • nanopower3_set_ctr_pin Nano Power 3 set CTRL pin state function.

    void nanopower3_set_ctr_pin ( nanopower3_t *ctx, uint8_t pin_state );
  • nanopower3_set_wiper_pos Nano Power 3 set wiper position function.

    err_t nanopower3_set_wiper_pos ( nanopower3_t *ctx, uint8_t wiper_pos );
  • nanopower3_set_voltage Nano Power 3 set output voltage function.

    err_t nanopower3_set_voltage ( nanopower3_t *ctx, uint8_t out_vol );

Example Description

This library contains API for the Nano Power 3 Click driver. This driver provides the functions to set the output voltage treshold.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, default settings sets output voltage to 1 V.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    nanopower3_cfg_t nanopower3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    nanopower3_cfg_setup( &nanopower3_cfg );
    NANOPOWER3_MAP_MIKROBUS( nanopower3_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == nanopower3_init( &nanopower3, &nanopower3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( NANOPOWER3_ERROR == nanopower3_default_cfg ( &nanopower3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the Nano Power 3 Click board™ by changing output voltage every 5 seconds starting from 1 V up to 4.5 V.

void application_task ( void ) 
{
    for ( uint8_t n_cnt = NANOPOWER3_1V_OUT_VOLTAGE; n_cnt <= NANOPOWER3_4V5_OUT_VOLTAGE; n_cnt++ )
    {
        nanopower3_set_voltage( &nanopower3, n_cnt );
        log_printf( &logger, " Selected output is:" );
        print_selected_output_level ( n_cnt );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NanoPower3

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Nano Power click

0

Nano Power click is a boost (step-up) DC-DC converter click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

[Learn More]

PWM Click

1

PWM click is a simple solution for controlling 16 PWM outputs through a single I2C interface. The click board carries the PCA9685PW IC. It is designed to use either a 3.3V or 5V power supply. The board also uses a LOW Output Enable Input pin (OE), which is in place of the default mikroBUS RST pin.

[Learn More]

MCP2518FD click

0

MCP2518FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2518FD, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver, the ATA6563, both from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2518FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that do not natively support CAN interface.

[Learn More]