TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141237 times)
  2. FAT32 Library (74038 times)
  3. Network Ethernet Library (58662 times)
  4. USB Device Library (48767 times)
  5. Network WiFi Library (44489 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29607 times)
  9. PID Library (27342 times)
  10. microSD click (27223 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CAN Isolator 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: CAN

Downloaded: 214 times

Not followed.

License: MIT license  

CAN Isolator 3 Click is a compact add-on board that provides isolated CAN communication. This board features the MAX14882, an isolated CAN transceiver with an integrated transformer driver from Analog Devices. It is galvanically isolated between the device's CAN-protocol controller side (TDX, RDX) and the physical wires of the CAN network (CANH, CANL) cable-side/bus-side of the transceiver.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CAN Isolator 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CAN Isolator 3 Click" changes.

Do you want to report abuse regarding "CAN Isolator 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


CAN Isolator 3 Click

CAN Isolator 3 Click is a compact add-on board that provides isolated CAN communication. This board features the MAX14882, an isolated CAN transceiver with an integrated transformer driver from Analog Devices. It is galvanically isolated between the device's CAN-protocol controller side (TDX, RDX) and the physical wires of the CAN network (CANH, CANL) cable-side/bus-side of the transceiver.

canisolator3_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : UART type

Software Support

We provide a library for the CAN Isolator 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for CAN Isolator 3 Click driver.

Standard key functions :

  • canisolator3_cfg_setup Config Object Initialization function.

    void canisolator3_cfg_setup ( canisolator3_cfg_t *cfg );
  • canisolator3_init Initialization function.

    err_t canisolator3_init ( canisolator3_t *ctx, canisolator3_cfg_t *cfg );
  • canisolator3_default_cfg Click Default Configuration function.

    err_t canisolator3_default_cfg ( canisolator3_t *ctx );

Example key functions :

  • canisolator3_generic_write CAN Isolator 3 data writing function.

    err_t canisolator3_generic_write ( canisolator3_t *ctx, uint8_t *data_in, uint16_t len );
  • canisolator3_generic_read CAN Isolator 3 data reading function.

    err_t canisolator3_generic_read ( canisolator3_t *ctx, uint8_t *data_out, uint16_t len );
  • canisolator3_set_pol_pin CAN Isolator 3 set polarity function.

    void canisolator3_set_pol_pin ( canisolator3_t *ctx, uint8_t pin_state );

Example Description

This example writes and reads and processes data from CAN Isolator 3 Click. The library also includes a function for selection of the output polarity.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    canisolator3_cfg_t canisolator3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    canisolator3_cfg_setup( &canisolator3_cfg );
    CANISOLATOR3_MAP_MIKROBUS( canisolator3_cfg, MIKROBUS_1 );
    if ( UART_ERROR == canisolator3_init( &canisolator3, &canisolator3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    canisolator3_default_cfg ( &canisolator3 );

#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- Transmitter mode ----" );
#else
    log_info( &logger, "---- Receiver mode ----" );
#endif 

    log_info( &logger, " Application Task " );
}

Application Task

This example contains Transmitter/Receiver task depending on uncommented code. Receiver logs each received byte to the UART for data logging, while the transmitter sends messages every 2 seconds.

void application_task ( void ) 
{
#ifdef DEMO_APP_TRANSMITTER
    canisolator3_generic_write( &canisolator3, TX_MESSAGE, strlen( TX_MESSAGE ) );
    log_info( &logger, "---- Data sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#else
    canisolator3_process( &canisolator3 );
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CANIsolator3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

I2C Isolator 5 Click

0

I2C Isolator 5 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features ISO1644, a hot-swappable bidirectional I2C isolator with enhanced EMC and GPIOs from Texas Instruments. The ISO1644 provides two bidirectional channels, supporting a completely isolated I2C interface that eliminates the need for splitting I2C signals into separate transmit and receive signals for use with standalone optocouplers.

[Learn More]

6DOF IMU 6 Click

0

6DOF IMU 6 Click features a 6-axis MotionTracking device that combines a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processor™ (DMP) labeled as ICM-20689. The ICM-20689 from company TDK InvenSense includes on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The gyroscope and accelerometer are full-scale range, user-programmable sensors with factory-calibrated initial sensitivity for reduced production-line calibration requirements.

[Learn More]

FRAM 5 Click

0

FRAM 5 Click is a compact add-on board representing a highly reliable ferroelectric random access memory solution. This board features the FM24V10, a 1Mbit nonvolatile memory employing an advanced ferroelectric process organized as 128K words of 8 bits each from Infineon. This I2C configurable FRAM performs read and write operations similar to a RAM providing reliable data retention for 151 years while eliminating the complexities, overhead, and system-level reliability problems caused by EEPROM and other nonvolatile memories.

[Learn More]