TOP Contributors

  1. MIKROE (2659 codes)
  2. Alcides Ramos (356 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136993 times)
  2. FAT32 Library (70109 times)
  3. Network Ethernet Library (56026 times)
  4. USB Device Library (46347 times)
  5. Network WiFi Library (41962 times)
  6. FT800 Library (41280 times)
  7. GSM click (29051 times)
  8. mikroSDK (26489 times)
  9. PID Library (26447 times)
  10. microSD click (25413 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 26 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 28 times

Not followed.

License: MIT license  

Brushless 26 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the DRV8317H, a three-phase PWM motor driver from Texas Instruments. It provides three integrated MOSFET half-bridges for driving three-phase brushless DC (BLDC) motors with 5V, 9V, 12V, or 18V DC rails or 2s to 4s batteries.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 26 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 26 click" changes.

Do you want to report abuse regarding "Brushless 26 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 26 click

Brushless 26 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the DRV8317H, a three-phase PWM motor driver from Texas Instruments. It provides three integrated MOSFET half-bridges for driving three-phase brushless DC (BLDC) motors with 5V, 9V, 12V, or 18V DC rails or 2s to 4s batteries.

brushless26_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : May 2023.
  • Type : I2C type

Software Support

We provide a library for the Brushless 26 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 26 Click driver.

Standard key functions :

  • brushless26_cfg_setup Config Object Initialization function.

    void brushless26_cfg_setup ( brushless26_cfg_t *cfg );
  • brushless26_init Initialization function.

    err_t brushless26_init ( brushless26_t *ctx, brushless26_cfg_t *cfg );
  • brushless26_default_cfg Click Default Configuration function.

    err_t brushless26_default_cfg ( brushless26_t *ctx );

Example key functions :

  • brushless26_reset_port_exp Brushless 26 reset port expander function.

    void brushless26_reset_port_exp ( brushless26_t *ctx );
  • brushless26_set_pins Brushless 26 set pins function.

    err_t brushless26_set_pins ( brushless26_t *ctx, uint8_t set_mask, uint8_t clr_mask );
  • brushless26_drive_motor Brushless 26 drive motor function.

    err_t brushless26_drive_motor ( brushless26_t *ctx, uint8_t dir, uint8_t speed, uint32_t time_ms );

Example Description

This example demonstrates the use of the Brushless 26 click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless26_cfg_t brushless26_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless26_cfg_setup( &brushless26_cfg );
    BRUSHLESS26_MAP_MIKROBUS( brushless26_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == brushless26_init( &brushless26, &brushless26_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS26_ERROR == brushless26_default_cfg ( &brushless26 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task");
}

Application Task

Drives the motor in both directions and changes the motor speed approximately every 2 seconds. The driving direction and speed will be displayed on the USB UART.

void application_task ( void ) 
{
    log_printf ( &logger, "\r\n Driving motor clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS26_SPEED_MIN; speed <= BRUSHLESS26_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS26_OK != brushless26_drive_motor ( &brushless26, BRUSHLESS26_DIR_CW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );

    log_printf ( &logger, "\r\n Driving motor counter-clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS26_SPEED_MIN; speed <= BRUSHLESS26_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS26_OK != brushless26_drive_motor ( &brushless26, BRUSHLESS26_DIR_CCW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless26

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Surface Temp click

0

Surface temp Click is high accuracy digital temperature sensor Click board™, offering breakthrough performance over a wide industrial range. It is equipped with the ADT7420 - an accurate 16-Bit Digital I2C temperature sensor from Analog Devices.

[Learn More]

USB UART 5 click

0

USB UART 5 Click is a compact add-on board with a general-purpose USB to UART serial interface. This board features the CP2110, a highly-integrated USB-to-UART bridge controller from Silicon Labs. The CP2110 uses the standard USB HID device class, requiring no custom driver and a UART interface that implements all RS-232 signals, including control and hardware handshaking, so existing system firmware does not need to be modified. The UART capabilities of the CP2110 also include baud rate support from 300 to 1Mbps, hardware flow control, RS-485 support, and GPIO signals that are user-defined for status and control information.

[Learn More]

USB to I2C 2 click

0

USB to I2C 2 Click is a compact add-on board that contains a general-purpose USB to I2C serial interface. This board features the FT201X, a full-speed USB to I2C protocol converter from FTDI. The FT201X converts USB2.0 full-speed to an I2C serial interface capable of operating up to 3.4MBit/s, with low power consumption (typical 8mA). The entire USB protocol is handled on the chip itself, where no USB-specific firmware programming is required. It also has a fully-integrated 2048 byte Multi-Time-Programmable (MTP) memory for storing device descriptors and CBUS I/O user-desirable configuration. This Click board™ includes the complete FT-X series feature set and enables USB to be added into a system design quickly and easily over an I2C interface.

[Learn More]