TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141832 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49312 times)
  5. Network WiFi Library (45109 times)
  6. FT800 Library (44676 times)
  7. GSM click (31289 times)
  8. mikroSDK (30218 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

AlphaNum G 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 79 times

Not followed.

License: MIT license  

AlphaNum G 2 Click is a compact add-on board that represents an easy solution for adding numeric or hexadecimal displays to your application. This board features the LTP-3862, a dual-digit 16-segment alphanumeric green display from Lite-ON. It is a 0.3” (7.62mm) display with black face and white segments. The LED segments use common anodes, and besides segments, the decimal point (DP) dot is also available.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "AlphaNum G 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "AlphaNum G 2 Click" changes.

Do you want to report abuse regarding "AlphaNum G 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


AlphaNum G 2 Click

AlphaNum G 2 Click is a compact add-on board that represents an easy solution for adding numeric or hexadecimal displays to your application. This board features the LTP-3862, a dual-digit 16-segment alphanumeric green display from Lite-ON. It is a 0.3” (7.62mm) display with black face and white segments. The LED segments use common anodes, and besides segments, the decimal point (DP) dot is also available.

alphanumg2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2023.
  • Type : SPI type

Software Support

We provide a library for the AlphaNum G 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for AlphaNum G 2 Click driver.

Standard key functions :

  • alphanumg2_cfg_setup Config Object Initialization function.

    void alphanumg2_cfg_setup ( alphanumg2_cfg_t *cfg );
  • alphanumg2_init Initialization function.

    err_t alphanumg2_init ( alphanumg2_t *ctx, alphanumg2_cfg_t *cfg );
  • alphanumg2_default_cfg Click Default Configuration function.

    err_t alphanumg2_default_cfg ( alphanumg2_t *ctx );

Example key functions :

  • alphanumg2_display_character AlphaNum G 2 display character function.

    err_t alphanumg2_display_character ( alphanumg2_t *ctx, uint8_t left_char, uint16_t left_brightness, uint8_t right_char, uint16_t right_brightness );
  • alphanumg2_set_led_output AlphaNum G 2 set LED output function.

    err_t alphanumg2_set_led_output ( alphanumg2_t *ctx, uint16_t seg_bit_mask, alphanumg2_dot_t seg_dot, uint16_t brightness );

Example Description

This example demonstrates the use of the AlphaNum G 2 Click board™ by writing and displaying the desired alphanumeric characters.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    alphanumg2_cfg_t alphanumg2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    alphanumg2_cfg_setup( &alphanumg2_cfg );
    ALPHANUMG2_MAP_MIKROBUS( alphanumg2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == alphanumg2_init( &alphanumg2, &alphanumg2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ALPHANUMG2_ERROR == alphanumg2_default_cfg ( &alphanumg2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

The demo application displays digits from '0' to '9', symbols: colon, semicolon, less-than, equals-to, greater-than, question mark, at sign and capital alphabet letters, on both alphanumeric segments of the Click. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    log_printf( &logger, " %c %c\r\n", character, character + 1 );
    if ( ALPHANUMG2_OK == alphanumg2_display_character( &alphanumg2, 
                                                        character, ALPHANUMG2_BRIGHTNESS_MAX, 
                                                        character + 1, ALPHANUMG2_BRIGHTNESS_MAX ) )
    {
        character++;
        if ( ASCII_CHARACTER_UPPERCASE_Z <= character )
        {
            character = ASCII_CHARACTER_DIGIT_0;
            log_printf( &logger, "------------------------\r\n" );
            Delay_ms ( 1000 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AlphaNumG2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Color 6 click

5

Color 6 click is a very accurate color sensing Click board which features the AS73211, an XYZ true color sensor from ams.

[Learn More]

NO2 click

5

NO2 click is a very accurate nitrogen-dioxide gas sensor Click board, equipped with the SPEC amperometric gas sensor which electrochemically reacts with the nitrogen-dioxide (NO2).

[Learn More]

ETH click

0

Example shows how to use the ENC28J60:<br/> the board will reply to ARP & ICMP echo requests<br/> the board will reply to UDP requests on any port :<br/> returns the request in upper char with a header made of remote host IP & port number<br/>

[Learn More]