TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136751 times)
  2. FAT32 Library (69955 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46268 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41182 times)
  7. GSM click (28986 times)
  8. PID Library (26414 times)
  9. mikroSDK (26367 times)
  10. microSD click (25377 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Opto Encoder 4 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 20 times

Not followed.

License: MIT license  

Opto Encoder 4 Click is a compact add-on board that contains an optical sensor/encoder that can be used for movement or rotation encoding. This board features the EE-SX4330, a transmissive photo-microsensor from OMRON. It is intended to be used with an encoder disk or similar device that will act as a barrier between the emitter and detector of the sensor. Usually, it will be the disk with perforations, which is commonly used to detect the rotation speed.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Opto Encoder 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Opto Encoder 4 click" changes.

Do you want to report abuse regarding "Opto Encoder 4 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Opto Encoder 4 click

Opto Encoder 4 Click is a compact add-on board that contains an optical sensor/encoder that can be used for movement or rotation encoding. This board features the EE-SX4330, a transmissive photo-microsensor from OMRON. It is intended to be used with an encoder disk or similar device that will act as a barrier between the emitter and detector of the sensor. Usually, it will be the disk with perforations, which is commonly used to detect the rotation speed.

optoencoder4_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Nov 2023.
  • Type : GPIO type

Software Support

We provide a library for the Opto Encoder 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Opto Encoder 4 Click driver.

Standard key functions :

  • optoencoder4_cfg_setup Config Object Initialization function.

    void optoencoder4_cfg_setup ( optoencoder4_cfg_t *cfg );
  • optoencoder4_init Initialization function.

    err_t optoencoder4_init ( optoencoder4_t *ctx, optoencoder4_cfg_t *cfg );

Example key functions :

  • optoencoder4_get_out_pin This function returns the output pin logic state.

    uint8_t optoencoder4_get_out_pin ( optoencoder4_t *ctx );
  • optoencoder4_get_our_pin This function returns the output pin reversed logic state.

    uint8_t optoencoder4_get_our_pin ( optoencoder4_t *ctx );

Example Description

This example demonstrates the use of Opto Encoder 4 click board by processing the encoder output pin state and incrementing the step counter on falling edge.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    optoencoder4_cfg_t optoencoder4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    optoencoder4_cfg_setup( &optoencoder4_cfg );
    OPTOENCODER4_MAP_MIKROBUS( optoencoder4_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == optoencoder4_init( &optoencoder4, &optoencoder4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Increments the step counter on falling edge of the encoder output pin state and displays it on the USB UART.

void application_task ( void )
{
    static uint32_t step_cnt = 0;

    log_printf( &logger, " Step counter : %lu\r\n", step_cnt );

    // Increment counter on falling edge of output pin
    while ( !optoencoder4_get_out_pin ( &optoencoder4 ) );
    while ( optoencoder4_get_out_pin ( &optoencoder4 ) );

    step_cnt++;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.OptoEncoder4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

CAP Wheel click

5

CAP Wheel Click is a capacitive touch sensor with round shaped electrodes integrated on a click board.

[Learn More]

WiFi 9 click

5

WiFi 9 Click is fully embedded stand-alone Wi-Fi module, equipped with the PAN9420 a 2.4 GHz ISM band Wi-Fi-embedded module which includes a wireless radio and an MCU for easy integration of Wi-Fi connectivity into various electronic devices.

[Learn More]

Magneto 6 click

0

Magneto 6 Click features low power three dimensional Hall effect sensor, TLI493D-A2B6, designed for magnetic sensing applications. It measures the magnetic field in X, Y, and Z direction. Each X, Y and Z Hall probe is connected sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optional, the temperature can be determined as well after the three Hall channels. The data measurement is provided in digital format to the microcontroller over the standard I2C interface. Some of the benefits of this Click board™ are wide application range addressable due to high flexibility and component reduction due to the 3D magnetic measurement principle.

[Learn More]