TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137096 times)
  2. FAT32 Library (70236 times)
  3. Network Ethernet Library (56122 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42073 times)
  6. FT800 Library (41384 times)
  7. GSM click (29114 times)
  8. mikroSDK (26561 times)
  9. PID Library (26489 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Air Quality 11 click

Rating:

0

Author: MIKROE

Last Updated: 2024-05-02

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 12 times

Not followed.

License: MIT license  

Air Quality 11 Click is a compact add-on board for monitoring and analyzing indoor air quality. This board features the ENS161, a multi-gas sensor from ScioSense based on metal oxide (MOX) technology, to detect a range of volatile organic compounds with high sensitivity. The board supports I2C and SPI communication protocols, allowing flexible integration with various MCU platforms. It can calculate equivalent CO2 and TVOC levels and provide standardized air quality indices directly on-chip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Air Quality 11 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Air Quality 11 click" changes.

Do you want to report abuse regarding "Air Quality 11 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Air Quality 11 click

Air Quality 11 Click is a compact add-on board for monitoring and analyzing indoor air quality. This board features the ENS161, a multi-gas sensor from ScioSense based on metal oxide (MOX) technology, to detect a range of volatile organic compounds with high sensitivity. The board supports I2C and SPI communication protocols, allowing flexible integration with various MCU platforms. It can calculate equivalent CO2 and TVOC levels and provide standardized air quality indices directly on-chip.

airquality11_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jan 2024.
  • Type : I2C/SPI type

Software Support

We provide a library for the Air Quality 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Air Quality 11 Click driver.

Standard key functions :

  • airquality11_cfg_setup Config Object Initialization function.

    void airquality11_cfg_setup ( airquality11_cfg_t *cfg );
  • airquality11_init Initialization function.

    err_t airquality11_init ( airquality11_t *ctx, airquality11_cfg_t *cfg );
  • airquality11_default_cfg Click Default Configuration function.

    err_t airquality11_default_cfg ( airquality11_t *ctx );

Example key functions :

  • airquality11_get_aqi_uba This function reads the calculated Air Quality Index according to the UBA.

    err_t airquality11_get_aqi_uba ( airquality11_t *ctx, uint8_t *aqi_uba );
  • airquality11_get_tvoc This function reads the calculated equivalent TVOC concentration in ppb.

    err_t airquality11_get_tvoc ( airquality11_t *ctx, uint16_t *tvoc_ppb );
  • airquality11_get_aqi_s This function reads the calculated relative Air Quality Index proprietary to ScioSense.

    err_t airquality11_get_aqi_s ( airquality11_t *ctx, uint16_t *aqi_s );

Example Description

This example demonstrates the use of the Air Quality 11 Click board by reading and displaying the calculated Air Quality Index according to the UBA and ScioSense, and equivalent TVOC and CO2 concentration.

The demo application is composed of two sections :

Application Init

The initialization of I2C and SPI module and log UART. After driver initialization, the app sets the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    airquality11_cfg_t airquality11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    airquality11_cfg_setup( &airquality11_cfg );
    AIRQUALITY11_MAP_MIKROBUS( airquality11_cfg, MIKROBUS_1 );
    err_t init_flag = airquality11_init( &airquality11, &airquality11_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( AIRQUALITY11_ERROR == airquality11_default_cfg ( &airquality11 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------------\r\n " );
    Delay_ms ( 100 );
}

Application Task

The demo application displays the Air Quality Index of the UBA information, concentration of the TVOC and CO2 and Air Quality Index according to ScioSense. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    uint8_t aqi_uba = 0;
    uint16_t aq_data = 0;

    if ( AIRQUALITY11_OK == airquality11_get_aqi_uba( &airquality11, &aqi_uba ) )
    {
        airquality11_display_aqi_uba( aqi_uba );
        Delay_ms ( 100 );
    }

    if ( AIRQUALITY11_OK == airquality11_get_tvoc( &airquality11, &aq_data ) )
    {
        log_printf( &logger, " TVOC: %u [ppb]\r\n", aq_data );
        Delay_ms ( 100 );
    }

    if ( AIRQUALITY11_OK == airquality11_get_co2( &airquality11, &aq_data ) )
    {
        log_printf( &logger, " ECO2: %u [ppm]\r\n", aq_data );
        Delay_ms ( 100 );
    }

    if ( AIRQUALITY11_OK == airquality11_get_aqi_s( &airquality11, &aq_data ) )
    {
        log_printf( &logger, " AQIS: %u [idx]\r\n", aq_data );
        Delay_ms ( 100 );
    }

    log_printf( &logger, "---------------------------\r\n " );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AirQuality11

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Ambient 4 click

5

Ambient 4 click is a light, intensity-sensing and measuring Click boardâ„¢, which features an accurate, light-intensity sensor labeled as BH1721FVC, made by ROHM corporation.

[Learn More]

OSD click

0

OSD Click features MAX7456 single-channel monochrome OSD module with integrated EEPROM memory as well as two RCA sockets. It is used to create on-screen menus and other video overlays, such as custom graphics, company logo, time and date using 256 user-programmable characters or pictographs.

[Learn More]

UWB 3 click

0

UWB 3 Click is a compact add-on board that brings Ultra-Wideband communication to your application. This board features the DWM3001, a fully integrated UWB transceiver module from Qorvo. The module integrates the DW3110 IC, nRF52833 MCU, planar UWB antenna, accelerometer, power management, and crystal. It is a fully calibrated, tested, and validated design. This Click board™ makes the perfect solution for the development of precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]