TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141687 times)
  2. FAT32 Library (74757 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44524 times)
  7. GSM click (31196 times)
  8. mikroSDK (30096 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 121 times

Not followed.

License: MIT license  

Stepper 13 Click is a bipolar step motor driver. It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. Stepper 13 Click also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 13 Click" changes.

Do you want to report abuse regarding "Stepper 13 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Stepper 13 Click

Stepper 13 Click is a bipolar step motor driver. It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. Stepper 13 Click also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

stepper13_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2024.
  • Type : I2C type

Software Support

We provide a library for the Stepper 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 13 Click driver.

Standard key functions :

  • stepper13_cfg_setup Config Object Initialization function.

    void stepper13_cfg_setup ( stepper13_cfg_t *cfg );
  • stepper13_init Initialization function.

    err_t stepper13_init ( stepper13_t *ctx, stepper13_cfg_t *cfg );
  • stepper13_default_cfg Click Default Configuration function.

    err_t stepper13_default_cfg ( stepper13_t *ctx );

Example key functions :

  • stepper13_set_direction This function sets the motor direction by setting the DIR pin logic state.

    err_t stepper13_set_direction ( stepper13_t *ctx, uint8_t dir );
  • stepper13_set_step_mode This function sets the step mode resolution settings.

    err_t stepper13_set_step_mode ( stepper13_t *ctx, uint8_t mode );
  • stepper13_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    err_t stepper13_drive_motor ( stepper13_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 13 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper13_cfg_t stepper13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper13_cfg_setup( &stepper13_cfg );
    STEPPER13_MAP_MIKROBUS( stepper13_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper13_init( &stepper13, &stepper13_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER13_ERROR == stepper13_default_cfg ( &stepper13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockwise for 200 half steps and 400 quarter steps with 2 seconds delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: slow\r\n\n" );
    stepper13_set_direction ( &stepper13, STEPPER13_DIR_CW );
    stepper13_set_step_mode ( &stepper13, STEPPER13_MODE_FULL_STEP );
    stepper13_drive_motor ( &stepper13, 200, STEPPER13_SPEED_SLOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 200 half steps counter-clockwise, speed: medium\r\n\n" );
    stepper13_set_direction ( &stepper13, STEPPER13_DIR_CCW );
    stepper13_set_step_mode ( &stepper13, STEPPER13_MODE_HALF_STEP );
    stepper13_drive_motor ( &stepper13, 200, STEPPER13_SPEED_MEDIUM );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise, speed: fast\r\n\n" );
    stepper13_set_direction ( &stepper13, STEPPER13_DIR_CCW );
    stepper13_set_step_mode ( &stepper13, STEPPER13_MODE_QUARTER_STEP );
    stepper13_drive_motor ( &stepper13, 400, STEPPER13_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

UWB click

5

UWB Click is an Ultra-Wideband transceiver Click board that can be used in 2-way ranging or TDOA location systems to locate assets to a precision of 10 cm and supports data rates of up to 6.8 Mbps. This board features the DWM1000 module based on Decawave's DW1000 Ultra-Wideband (UWB) transceiver from Decawave Limited.

[Learn More]

Accel 30 Click

0

Accel 30 Click is a compact add-on board that contains an acceleration sensor. This board features the MC3635, an ultra-low power, low-noise, integrated digital output 3-axis accelerometer from MEMSIC. The MC3635 allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, ±12g, or ±16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. It also supports high-resolution, low-power operating modes and interrupt feature for various events allowing maximum flexibility to meet multiple use case needs.

[Learn More]

I2C 1-Wire 2 Click

0

I2C 1-Wire 2 Click is a compact add-on board bridging I2C master interfaces with 1-Wire slave devices, ideal for simplifying complex communication protocols. This board features the DS2485, an advanced 1-Wire master with memory from Analog Devices. It features adjustable internal timers for precise 1-Wire signal management, relieving the host processor of timing-sensitive operations, and supports standard and overdrive communication speeds.

[Learn More]