TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141936 times)
  2. FAT32 Library (75086 times)
  3. Network Ethernet Library (59382 times)
  4. USB Device Library (49373 times)
  5. Network WiFi Library (45195 times)
  6. FT800 Library (44755 times)
  7. GSM click (31329 times)
  8. mikroSDK (30291 times)
  9. microSD click (27699 times)
  10. PID Library (27584 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibro Motor 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 331 times

Not followed.

License: MIT license  

Vibro Motor 2 Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as Z4FC1B1301781 as well as DMG3420U MOSFET to drive the ERM motor, since the MCU itself cannot provide enough power for the motor driving. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibro Motor 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibro Motor 2 Click" changes.

Do you want to report abuse regarding "Vibro Motor 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Vibro Motor 2 Click

Vibro Motor 2 Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as Z4FC1B1301781 as well as DMG3420U MOSFET to drive the ERM motor, since the MCU itself cannot provide enough power for the motor driving. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect

vibromotor2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : PWM type

Software Support

We provide a library for the VibroMotor2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for VibroMotor2 Click driver.

Standard key functions :

  • vibromotor2_cfg_setup Config Object Initialization function.

    void vibromotor2_cfg_setup ( vibromotor2_cfg_t *cfg );
  • vibromotor2_init Initialization function.

    err_t vibromotor2_init ( vibromotor2_t *ctx, vibromotor2_cfg_t *cfg );

Example key functions :

  • vibromotor2_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vibromotor2_set_duty_cycle ( vibromotor2_t *ctx, float duty_cycle );
  • vibromotor2_pwm_stop This function stops the PWM moudle output.

    err_t vibromotor2_pwm_stop ( vibromotor2_t *ctx );
  • vibromotor2_pwm_start This function starts the PWM moudle output.

    err_t vibromotor2_pwm_start ( vibromotor2_t *ctx );

Example Description

This application contorl the speed of vibro motor.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and PWM. Configures PWM to 5kHz frequency, calculates maximum duty ratio and starts PWM with duty ratio value 0.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    vibromotor2_cfg_t vibromotor2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    vibromotor2_cfg_setup( &vibromotor2_cfg );
    VIBROMOTOR2_MAP_MIKROBUS( vibromotor2_cfg, MIKROBUS_1 );
    err_t init_flag  = vibromotor2_init( &vibromotor2, &vibromotor2_cfg );
    if ( PWM_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    vibromotor2_set_duty_cycle ( &vibromotor2, 0.0 );
    vibromotor2_pwm_start( &vibromotor2 );

    log_info( &logger, " Application Task " );
}

Application Task

Allows user to enter desired command to control Vibro Motor Click board.


void application_task ( void ) {
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    vibromotor2_set_duty_cycle ( &vibromotor2, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) {
        duty_inc = -1;
    } else if ( 0 == duty_cnt ) {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibroMotor2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

GNSS MAX Click

0

GNSS MAX Click is a compact add-on board that provides fast positioning capability. This board features the MAX-M10S, an ultra-low-power GNSS receiver for high-performance asset-tracking from u-blox. The MAX-M10S supports the concurrent reception of four GNSS (GPS, GLONASS, Galileo, and BeiDou), which maximizes the position availability, particularly under challenging conditions such as in deep urban canyons. It is built on the u-blox M10 GNSS platform, which provides exceptional sensitivity and acquisition times for all L1 GNSS systems. It also comes with a configurable host interface, and advanced jamming and spoofing detection.

[Learn More]

Thermo 26 Click

0

Thermo 26 Click is a compact add-on board that accurately measures temperature. This board features the STS31-DIS, a high-accuracy digital temperature sensor from Sensirion. Characterized by its high accuracy (up to ±0.2°C typical) and high resolution of 0.01°C, the STS31-DIS provides temperature data to the host controller with a configurable I2C interface. It relies on the industry-proven CMOSens® technology, providing increased intelligence, reliability, and improved accuracy specifications, including enhanced signal processing, user-selectable I2C addresses, and up to 1 MHz communication speeds.

[Learn More]

Ultra-Low Press Click

0

Ultra-Low Press Click is a compact add-on board containing a mountable gage pressure sensor for pneumatic pressure measurements.

[Learn More]