TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141786 times)
  2. FAT32 Library (74881 times)
  3. Network Ethernet Library (59280 times)
  4. USB Device Library (49265 times)
  5. Network WiFi Library (45077 times)
  6. FT800 Library (44613 times)
  7. GSM click (31272 times)
  8. mikroSDK (30203 times)
  9. microSD click (27653 times)
  10. PID Library (27552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Altitude 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 276 times

Not followed.

License: MIT license  

Altitude 5 Click is a compact add-on board allowing high-resolution barometric pressure measurement. This board features the KP236, an analog barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP236 is primarily developed for measuring barometric air pressure but can also be used in other application fields. It is surface micro-machined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The calibrated transfer function converts pressure into an analog output signal in a range of 40kPa to 115kPa. However, the choice of signal processing is up to the user; more precisely, the user can process the output signal in analog or digital form. The high accuracy and the high sensitivity of the KP236 make this Click board™ suitable for advanced automotive applications and industrial and consumer applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Altitude 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Altitude 5 Click" changes.

Do you want to report abuse regarding "Altitude 5 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Altitude 5 Click

Altitude 5 Click is a compact add-on board allowing high-resolution barometric pressure measurement. This board features the KP236, an analog barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP236 is primarily developed for measuring barometric air pressure but can also be used in other application fields. It is surface micro-machined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The calibrated transfer function converts pressure into an analog output signal in a range of 40kPa to 115kPa. However, the choice of signal processing is up to the user; more precisely, the user can process the output signal in analog or digital form. The high accuracy and the high sensitivity of the KP236 make this Click board™ suitable for advanced automotive applications and industrial and consumer applications.

altitude5_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2021.
  • Type : I2C type

Software Support

We provide a library for the Altitude5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Altitude5 Click driver.

Standard key functions :

  • altitude5_cfg_setup Config Object Initialization function.

    void altitude5_cfg_setup ( altitude5_cfg_t *cfg );
  • altitude5_init Initialization function.

    err_t altitude5_init ( altitude5_t *ctx, altitude5_cfg_t *cfg );
  • altitude5_default_cfg Click Default Configuration function.

    err_t altitude5_default_cfg ( altitude5_t *ctx );

Example key functions :

  • altitude5_get_altitude Altitude 5 get altitude function.

    err_t altitude5_get_altitude ( altitude5_t *ctx, float *altitude );
  • altitude5_get_pressure Altitude 5 get pressure function.

    err_t altitude5_get_pressure ( altitude5_t *ctx, float *pressure );
  • altitude5_get_adc_voltage Altitude 5 get ADC voltage function.

    err_t altitude5_get_adc_voltage ( altitude5_t *ctx, float *adc_vtg );

Example Description

This library contains API for Altitude 5 Click driver. The demo application reads ADC value, calculate pressure and altitude.

The demo application is composed of two sections :

Application Init

Initializes I2C or analog driver and log UART. After driver initialization the app set default settings.


void application_init ( void ) 
{
    log_cfg_t log_cfg;              /**< Logger config object. */
    altitude5_cfg_t altitude5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    altitude5_cfg_setup( &altitude5_cfg );
    ALTITUDE5_MAP_MIKROBUS( altitude5_cfg, MIKROBUS_1 );
    err_t init_flag = altitude5_init( &altitude5, &altitude5_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    altitude5_default_cfg ( &altitude5 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, "----------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This is an example that demonstrates the use of the Altitude 5 Click board™. In this example, we read ADC values and display the Pressure ( mBar ) and Altitude ( m ) data. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    static float pressure;
    static float altitude;

    altitude5_get_pressure( &altitude5, &pressure );
    log_printf( &logger, " Pressure    : %.2f mBar \r\n", pressure );
    Delay_ms ( 100 );

    altitude5_get_altitude( &altitude5, &altitude );
    log_printf( &logger, " Altitude    : %.2f m \r\n", altitude );
    log_printf( &logger, "----------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Altitude5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Accel 14 click

5

Accel 14 Click is digital acceleration and vibration sensor Click boardâ„¢. It features an ultra-wide bandwidth, low-noise, 3-axis digital vibration sensor, labeled as IIS3DWB, from STMicroelectronics.

[Learn More]

Current Click

0

Current Click is an add-on board used for measurement of electric current. It features INA196 current shunt monitor, MCP3201 12-bit ADC, MAX6106 voltage reference as well as two screw terminals.

[Learn More]

Matrix G Click

0

Matrix G Click is a mikroBUS add-on board with two green 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers. The active area of each matrix is 7.62mm high and 5.08 mm wide. 7x5 is a standard resolution for displaying ASCII characters, so the Click is essentially a dual-character display capable of showing letters in more readable typefaces compared to a 14-segment display. The Click communicates with the target MCU through the mikroBUS SPI interface with two separate Chip Select lines for each matrix (CSL for the left, CSR for the right). This board is designed to use a 5V power supply.

[Learn More]