TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58776 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

OSD click

Rating:

0

Author: MIKROE

Last Updated: 2019-07-30

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: OSD

Downloaded: 8213 times

Followed by: 1 user

License: MIT license  

This is a sample program which demonstrates the use of OSD click.
Program shows the time and date in corners of the screen and enable you to set the time and date, using the OSD menu.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "OSD click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "OSD click" changes.

Do you want to report abuse regarding "OSD click".

  • mikroSDK Library 2.0.0.0
  • Comments (2)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

OSD click

OSD click

Front and back side appearance of the OSD click Board.

View full image

Library Description

The library covers all the necessary functions to control OSD click board. The library performs the communication with the device via SPI protocol by writing to registers and by reading from registers.

Key functions:

  • void osd_writeByte( uint8_t regAddress, uint8_t writeData ) - Write the byte of data function.
  • uint8_t osd_readByte( uint8_t regAddress ) - Read the byte of data function.
  • void osd_writeCharacter( uint8_t linePos, uint8_t rowPos, uint8_t symbol ) - Write a character by position function.

Examples description

The application is composed of the three sections :

  • System Initialization - Initializes SPI and LOG structures sets AN, INT and PWM pins as input, set RST and CS pins as output and start to write log.
  • Application Initialization - Initialization driver enables - SPI, the set default configuration, clears all character places, also write log.
  • Application Task - This is an example which demonstrates the use of OSD Click board. In this example, we write text on the screen, write character per 1 second in the first, seventh and fifteenth row of the screen.
void applicationTask()
{
    for ( cnt = 0; cnt < 30; cnt++ )
    {
        if( HEADER_TEXT[ cnt ] != ' ' )
        {
            osd_writeCharacter( 1, cnt, HEADER_TEXT[ cnt ] );
        }

        if( MESSAGE_TEXT[ cnt ] != ' ' )
        {
            osd_writeCharacter( 7, cnt, MESSAGE_TEXT[ cnt ] );
        }

        if( FOOTER_TEXT[ cnt ] != ' ' )
        {
            osd_writeCharacter( 14, cnt, FOOTER_TEXT[ cnt ] );
        }

        Delay_1sec();
    }

    osd_clearsCharPlaces( 0, 0, 16, 30 );
    Delay_1sec();
}

Other mikroE Libraries used in the example:

  • SPI
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

StereoAmp click

0

StereoAmp click functions as a stereo amplifier and is ideal for battery powered devices. It features two LM48100Q-Q1 Boomer ICs by Texas Instruments.

[Learn More]

ADAC 2 Click

0

ADAC 2 Click is a compact add-on board providing the ADC/DAC combo solution. This board features the MAX22000, a 24-bit ADC, an 18-bit DAC, and an analog front-end (AFE) from Analog Devices. It allows users to create a software-configurable (SPI interface) input/output that supports all standard industrial analog interfaces: -10V to +10V analog input or output, -20mA to +20mA analog input or output, as well as an RTD or thermocouple input for temperature measurement.

[Learn More]

UT-S 7-SEG R Click

0

7-segment LED display is the most commonly used type of display to represent changing numerical values. The principle is very simple - seven LED segments are positioned in a certain shape and by turning specific segments on or off, the shape that resembles a specific number is lit. This method of displaying numbers was first used in the beginning of the 20th century, but after the invention of the LED in ‘70, it is the most commonly used method to display numbers. It utilizes a fairly simple and cheap design with the numbers clearly visible.

[Learn More]