TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137077 times)
  2. FAT32 Library (70222 times)
  3. Network Ethernet Library (56094 times)
  4. USB Device Library (46407 times)
  5. Network WiFi Library (42028 times)
  6. FT800 Library (41372 times)
  7. GSM click (29109 times)
  8. mikroSDK (26551 times)
  9. PID Library (26487 times)
  10. microSD click (25483 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Cap Touch 6 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 46 times

Not followed.

License: MIT license  

Cap Touch 6 Click is a compact add-on board that easily integrates projected capacitive touch into users' applications. This board features the IQS227D, a single-channel capacitive controller with an internal voltage regular and reference capacitor from Azoteq. Besides the capacitive sensing area, this board also has output pins for proximity and touch events with their corresponding LED indicators. The IQS227D automatically tracks slow varying environmental changes via various filters.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Cap Touch 6 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Cap Touch 6 click" changes.

Do you want to report abuse regarding "Cap Touch 6 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Cap Touch 6 click

Cap Touch 6 Click is a compact add-on board that easily integrates projected capacitive touch into users' applications. This board features the IQS227D, a single-channel capacitive controller with an internal voltage regular and reference capacitor from Azoteq. Besides the capacitive sensing area, this board also has output pins for proximity and touch events with their corresponding LED indicators. The IQS227D automatically tracks slow varying environmental changes via various filters.

captouch6_click.png

click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Nov 2022.
  • Type : GPIO type

Software Support

We provide a library for the Cap Touch 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Cap Touch 6 Click driver.

Standard key functions :

  • captouch6_cfg_setup Config Object Initialization function.

    void captouch6_cfg_setup ( captouch6_cfg_t *cfg );
  • captouch6_init Initialization function.

    err_t captouch6_init ( captouch6_t *ctx, captouch6_cfg_t *cfg );

Example key functions :

  • captouch6_get_tout_pin This function returns the TOUT pin logic state.

    uint8_t captouch6_get_tout_pin ( captouch6_t *ctx );
  • captouch6_get_pout_pin This function returns the POUT pin logic state.

    uint8_t captouch6_get_pout_pin ( captouch6_t *ctx );

Example Description

This example demonstrates the use of Cap Touch 6 click board by reading and displaying the touch and proximity events.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    captouch6_cfg_t captouch6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    captouch6_cfg_setup( &captouch6_cfg );
    CAPTOUCH6_MAP_MIKROBUS( captouch6_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == captouch6_init( &captouch6, &captouch6_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the touch and proximity event pins state and displays them on the USB UART on changes.

void application_task ( void )
{
    static uint8_t old_touch_state = 0, old_prox_state = 0;
    uint8_t touch_state = captouch6_get_tout_pin ( &captouch6 );
    uint8_t prox_state = captouch6_get_pout_pin ( &captouch6 );
    if ( ( old_touch_state != touch_state ) || ( old_prox_state != prox_state ) )
    {
        log_printf( &logger, " Touch: %s\r\n", ( char * ) ( !touch_state ? "detected" : "idle" ) );
        log_printf( &logger, " Proximity: %s\r\n\n", ( char * ) ( !prox_state ? "detected" : "idle" ) );
        old_touch_state = touch_state;
        old_prox_state = prox_state;
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CapTouch6

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Hall Current 10 click

0

Hall Current 10 Click is a compact add-on board that provides economical and precise AC or DC current sensing solutions. This board features the ACHS-7194, a fully integrated Hall-effect-based isolated linear current sensor designed for the current range of ±40A from Broadcom Limited. Inside ACHS-7194 is a precise, low-offset, linear Hall circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field that the differential Hall sensors convert into a proportional voltage, where after that, the user is given the option to process the output voltage as an analog or digital value. This Click board™ is suitable for AC or DC current-sensing in industrial, commercial, and communications systems.

[Learn More]

N-PLC click

0

N-PLC Click is a compact add-on board that uses existing electrical power lines to transmit data signals. This board features the SM2400, an advanced multi-standard Narrow-band Power Line Communication (N-PLC) modem from Semitech. The SM2400 features a dual-core architecture, a DSP core for N-PLC modulations, and a 32-bit core for running protocols for superior communication performance and flexibility for various open standards and customized implementations. It includes firmware options for IEEE 1901.2 compliant PHY and MAC layers, a 6LoWPAN data link layer, and special modes for industrial IoT applications. In addition to the ability to accept signals from another PLC modem or the power line communication AC coupling circuit, this board also has a handful of other features, such as a selectable interface and power supply, firmware update capabilities, LED indicators, and many others.

[Learn More]

Brushless 4 click

5

Brushless 4 click is a 3 phase sensorless BLDC motor driver, which features a 180° sinusoidal drive, providing high efficiency and low acoustic noise. This type of drivers inherently provides higher torque in general, compared to classical 120° BLDC motor drivers.

[Learn More]