TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
Example

3D Motion click board - Example

Rating:

1

Author: MIKROE

Last Updated: 2016-02-21

Package Version: 1.0.0.0

Example: 1.0.0.0

Category: Motion

Downloaded: 1463 times

Followed by: 3 users

License: MIT license  

3D Motion click carries Microchip’s MM7150 9-axis sensor fusion motion module. It’s a complete self contained solution comprising a 3-axis accelerometer, a gyroscope, a magnetometer, and a SSC7150 motion coprocessor.

Example displays data acquired from the sensors on TFT display.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "3D Motion click board - Example" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "3D Motion click board - Example" changes.

Do you want to report abuse regarding "3D Motion click board - Example".

  • Information
  • Comments (6)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

Example Blog

3D Motion Click Board

3D Motion Click Board

Front and back view of 3D Motion Click Board designed in mikroBUS form factor.

View full image

3D Motion click carries Microchip’s MM7150 9-axis sensor fusion motion module. It’s a complete self contained solution comprising a 3-axis accelerometer, a gyroscope, a magnetometer, and a SSC7150 motion coprocessor. The motion coprocessor has sensor fusion alghoritms that take raw data from individual sensors and filter, compensate and combine them together. The resulting output provides reliable and accurate positioning and orientation information. The board communicates with the target MCU through the mikroBUS™ I2C interface; WAKE and RESET pins are also used (in placed of default mikroBUS™ AN and RST respectively), as well as an interrupt pin (INT).

Examples are written for:
  - EasyPIC Fusion v7 - PIC32MX795F512L

3D Motion click board Schematic

3D Motion click board Schematic

3D Motion click board Schematic The board is designed to use 3.3V power supply only

View full image

ALSO FROM THIS AUTHOR

IR distance Click

0

IR distance Click carries Sharp’s GP2Y0A60SZ0F distance measuring sensor, which comprises of an integrated PSD (position sensitive detector), an infrared LED and a signal processing circuit. The measuring range is between 10 and 150 cm. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over RST and AN pin on the mikroBUS™ line.

[Learn More]

RadioStation Click

0

RadioStation Click is a unique Click board™ that can be used to broadcast the music via the FM radio band. It features the Si4713-B30 from Silicon Labs, the best in class integrated FM broadcast stereo transmitter, which operates in the frequency range of 76MHz to 108MHz. It can also broadcast RDS/RDBS data. The Click board™ can be equipped with a small FM antenna, which is used to extend the broadcasting range.

[Learn More]

Voltmeter click

2

Voltmeter click is a mikroBUS add-on board for measuring voltage in an external electric circuit. The board is designed to measure Direct Current only, and has a measurement range is from 0 to 24V (it’s possible to measure both positive and negative charges).

[Learn More]