TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139841 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47739 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28439 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Temp-Hum 4 click

Rating:

5

Author: MIKROE

Last Updated: 2018-03-12

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Temperature & humidity

Downloaded: 5194 times

Not followed.

License: MIT license  

Temp-Hum 4 click is a smart environmental temperature and humidity sensor Click board, packed with features, that allow easy and simple integration into any design that requires accurate and reliable humidity and temperature measurements.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Temp-Hum 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Temp-Hum 4 click" changes.

Do you want to report abuse regarding "Temp-Hum 4 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Temp-Hum 4 click

Temp-Hum 4 click

Native view of the Temp-Hum 4 click board.

View full image
Temp-Hum 4 click

Temp-Hum 4 click

Front and back view of the Temp-Hum 4 click board.

View full image

Library Description

The library covers all functionalities of the click board.

Key functions:

float temphum4_getTemperature() - Read temperature form sensor

float temphum4_getHuminidy() - Read humidity from sensor

void temphum4_Configuration(uint16_t _data) - Configure sensor

Examples Description

The application is composed of three sections:

 

  • System Initialization - Initializes I2C module and CS pin, RST pin as OUTPUT and INT pin as INPUT.
  • Application Initialization - Initializes Driver init and settings chip mode ACTIVE and configuration measurement.
  • Application Task - (code snippet) - Reads the temperature and huminidy and logs to the USBUART every 500 ms.

 

void applicationTask()
{
 Temperature = temphum4_getTemperature();
 Huminidy = temphum4_getHuminidy();

 FloatToStr(Temperature,temp_txt);
 mikrobus_logWrite("Temperature : ",_LOG_TEXT);
 mikrobus_logWrite(temp_txt,_LOG_LINE);

 FloatToStr(Huminidy,hum_txt);
 mikrobus_logWrite("Huminidy : ",_LOG_TEXT);
 mikrobus_logWrite(hum_txt,_LOG_LINE);

 Delay_ms( 500 );
}

Other mikroE Libraries used in the example:

  • I2C
  • UART
  • Conversions

Additional notes and information

Depending on the development board you are using, you may need USB UART click,  USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

3D Hall 8 Click

0

3D Hall 8 Click is a compact add-on board containing an ultra-small 3D-magnetic sensor for industrial and consumer applications.

[Learn More]

BLE P Click - Android Application

0

Explore the possibilities of BLE P click - the add-on board for adding a Bluetooth Low Energy peripheral device to your embedded design. You can use this application as a starting point for developing your own apps. Or you can just pair it with an EasyMX PRO for STM32 development system and tinker with various PORTS and LEDs.

[Learn More]

RTC 14 Click

0

RTC 14 Click is a compact add-on board that measures the passage of time. This board features the ISL1221, a low-power RTC with battery-backed SRAM and event detection from Renesas. The ISL1221 tracks time with separate registers for hours, minutes, and seconds, operating in normal and battery mode. It also can timestamp an event by either issuing an output signal, containing the second, minute, hour, date, month, and year that the triggering event occurred, or by stopping the RTC registers from advancing at the moment the event occurs. The calendar feature is exceptionally accurate through 2099, with automatic leap year correction.

[Learn More]