TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142105 times)
  2. FAT32 Library (75382 times)
  3. Network Ethernet Library (59546 times)
  4. USB Device Library (49550 times)
  5. Network WiFi Library (45357 times)
  6. FT800 Library (44990 times)
  7. GSM click (31486 times)
  8. mikroSDK (30564 times)
  9. microSD click (27873 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Altitude 2 click

Rating:

5

Author: MIKROE

Last Updated: 2018-05-23

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Pressure

Downloaded: 6077 times

Not followed.

License: MIT license  

Altitude 2 click is a high-resolution barometric pressure sensor Click board. It provides very accurate measurements of temperature and atmospheric pressure, which can be used to calculate the altitude with a very high resolution of 20cm per step.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Altitude 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Altitude 2 click" changes.

Do you want to report abuse regarding "Altitude 2 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Altitude 2 click

Altitude 2 click

Native view of the Altitude 2 click borad.

View full image
Altitude 2 click

Altitude 2 click

Front and back view of the Altitude 2 click board.

View full image

Library Description

The library initializes and defines I2C and SPI driver and performs the communication with device registers by both drivers. The library offers a choice to measure the temperature in Celsius units, and the pressure in mbar units. The user can determine the oversampling ratio value for both measurements independently. For more details check the documentation.


Key functions:

  • uint8_t altitude2_readPROM( uint8_t selectData, uint32_t *dataOut )- The function reads calibration data from PROM.
  • uint8_t altitude2_setRatio( uint8_t tempRatio, uint8_t pressRatio )- The function determines the oversampling ratio value for temperature and pressure measurements.
  • void altitude2_readData( float *tempData, float *pressData, float *altitudeData )- The function performs temperature and pressure measurements with desired oversampling ratio and performs the calculations that convert temperature data in Celsius value and pressure data in mbar value. Depending on the temperature and pressure calculated values, the function calculates the altitude value in meters.

Examples Description

  • System Initialization - Initializes peripherals and pins.
  • Application Initialization - Initializes I2C/SPI driver and performs the device reset, after which the calibration coefficients be read. Determines the ratio value for temperature and pressure measurements. Calibration coefficients are necessary to read after the device reset.
  • Application Task - (code snippet) - Gets temperature data in Celsius value and pressure data in mbar value. Gets the calculated altitude value in meters which depends on the temperature and pressure measurements. Logs results on USB UART and repeats operation every 300 ms.
void applicationTask()
{
 altitude2_readData( &temperature, &pressure, &altitude );

 mikrobus_logWrite( "Temperature is: ", _LOG_TEXT );
 FloatToStr( temperature, text );
 mikrobus_logWrite( text, _LOG_TEXT );
 mikrobus_logWrite( " Celsius", _LOG_LINE );

 mikrobus_logWrite( "Pressure is: ", _LOG_TEXT );
 FloatToStr( pressure, text );
 mikrobus_logWrite( text, _LOG_TEXT );
 mikrobus_logWrite( " mbar", _LOG_LINE );

 mikrobus_logWrite( "Altitude is: ", _LOG_TEXT );
 FloatToStr( altitude, text );
 mikrobus_logWrite( text, _LOG_TEXT );
 mikrobus_logWrite( " m", _LOG_LINE );
 mikrobus_logWrite( "", _LOG_LINE );

 Delay_ms( 300 );
}

mikroE Libraries used in the example:

  • Conversions
  • I2C
  • SPI
  • UART

Additional notes and information

Depending on the development board you are using, you may need USB UART click, USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Color 11 Click

0

Color 11 Click is a compact add-on board that provides an accurate color-sensing solution. This board features the TCS34083M, an ALS/color sensor with selective flicker detection from ams-OSRAM. The sensor features ambient light and color (RGB) sensing and flicker detection, which suppresses cross-coupling from 940nm IR if generated by adjacent circuits. The main benefits of this sensor are invisible ALS and color sensing under any glass type, unique fast ALS integration mode, and more. It features configurable programmable gain and integration time, tailored ALS and color response, ALS/color interrupt with thresholds, and many more.

[Learn More]

CAN FD 7 Click

0

CAN FD 7 Click is a compact add-on board that contains a CAN transceiver that supports both CAN and CAN FD protocols. This board features the TCAN1462, an automotive fault-protected CAN FD transceiver from Texas Instruments. It is a high-speed Controller Area Network (CAN) transceiver that meets the ISO 11898-2:2016 high-speed CAN specification and the CiA 601-4 signal improvement capability (SIC) specification.

[Learn More]

Pollution click

5

Pollution click has high sensitivity to organic gases such as methanal, benzene, alcohol, toluene, etc. The click carries the WSP2110 VOC gas sensor with the detection range of 1~50ppm. Pollution click is designed to run on 5V power supply. It communicates with the target MCU over AN and RST pin on the mikroBUS line.

[Learn More]