TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141617 times)
  2. FAT32 Library (74635 times)
  3. Network Ethernet Library (59121 times)
  4. USB Device Library (49156 times)
  5. Network WiFi Library (44918 times)
  6. FT800 Library (44442 times)
  7. GSM click (31112 times)
  8. mikroSDK (30006 times)
  9. microSD click (27525 times)
  10. PID Library (27508 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pedometer click

Rating:

5

Author: MIKROE

Last Updated: 2019-06-18

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 3485 times

Not followed.

License: MIT license  

Pedometer Click is designed to sense movement, more precisely, to sense and count steps taken by its user. It is equipped with the STP201M module, a 3D pedometer module with an IC chipset, which includes a precise G-sensor and MCU.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pedometer click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pedometer click" changes.

Do you want to report abuse regarding "Pedometer click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Pedometer click

Pedometer click

Native view of the Pedometer click board.

View full image
Pedometer click

Pedometer click

Front and back view of the Pedometer click board.

View full image

Library Description

The library contains all the necessary functions for detecting and reading the steps.

Key functions:

  • uint8_t pedometer_process() - Pedometer process.
  • uint32_t pedometer_getStepCounter() - Functions for get step counter.
  • void pedometer_resetStepCounter(uint32_t newCnt) - Functions for reset Step counter.

Examples description

The application is composed of three sections :

  • System Initialization - Sets INT pin as INPUT for detection STEP .
  • Application Initialization - Initializes driver init and sets step counter on 0 .
  • Application Task - It checks if a new step is detected, if detected new step - reads the current number of steps made and logs data to the USBUART.
void applicationTask()
{
    uint8_t newStep;
    uint32_t stepCounter;
    char demoText[ 50 ];
    
    newStep = pedometer_process();

    if(newStep == PEDOMETER_NEW_STEP_DETECTED)
    {
        stepCounter = pedometer_getStepCounter();
        LongWordToStr(stepCounter, demoText);
        mikrobus_logWrite(" Step Counter : ", _LOG_TEXT);
        mikrobus_logWrite(demoText, _LOG_LINE);
        
        mikrobus_logWrite("---------------------------", _LOG_LINE);
        Delay_ms( 50 );
    }
}

Other mikroE Libraries used in the example:

  • Conversions Library
  • UART Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

RTD 2 Click

0

RTD 2 Click is a compact add-on board used for applications with resistive elements that change resistance over temperature. This board features the ADS1247, 24-bit analog-to-digital converter with a programmable gain amplifier (PGA) for sensor measurement applications from Texas Instruments.

[Learn More]

BLE 9 Click

0

BLE 9 Click is a fully embedded stand-alone Bluetooth 5.2 Energy connectivity module, equipped with the EFR32BG22 Series 2 Modules, an ultra-small, high-performing, standalone Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices. This module combines a high-performance Arm® Cortex®-M33 CPU microprocessor with FPU, and state-of-the-art power performance. Reliable and easy to use, BLE 9 Click is a perfect solution for development of various IoT applications, smart home applications, BLE enabled toys, advanced robotics, and other similar applications.

[Learn More]

IR Grid 2 Click

0

IR Grid 2 Click is a thermal imaging sensor. It has an array of 768 very sensitive factory calibrated IR elements (pixels), arranged in 32 rows of 24 pixels. Each one of them is measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90640ESF-BAB IR sensor used on this Click board™ has just four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

[Learn More]