TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141590 times)
  2. FAT32 Library (74540 times)
  3. Network Ethernet Library (59060 times)
  4. USB Device Library (49091 times)
  5. Network WiFi Library (44838 times)
  6. FT800 Library (44398 times)
  7. GSM click (31067 times)
  8. mikroSDK (29936 times)
  9. microSD click (27504 times)
  10. PID Library (27492 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Secure 5 click

Rating:

0

Author: MIKROE

Last Updated: 2019-10-03

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Encryption

Downloaded: 414 times

Not followed.

License: MIT license  

Secure 5 Click carries the ATECC508A cryptographic coprocessor with secure hardware-based key storage, from Microchip. The ATECC508A includes an EEPROM array which can be used for storage of up to 16 keys, certificates, miscellaneous read/write, read-only or secret data, consumption logging, and security configurations.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Secure 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Secure 5 click" changes.

Do you want to report abuse regarding "Secure 5 click".

  • Information
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Secure 5 click

Secure 5 click

Native view of the Secure 5 click board.

View full image
Secure 5 click

Secure 5 click

Front and back view of the Secure 5 click board.

View full image

Library Description

The library demonstrates the operation of the software single wire interface implementation.

Key functions:

  • int8_t secureswi_init(T_SECURESWI_DIRSET inSet, T_SECURESWI_DIRSET outSet) - Initialize the SWI interface and pass the pin direction setting functions.
  • void secureswi_sendBytes(uint8_t len,uint8_t *stBuf) - Encode data buffer and send the data to the SWI bus.
  • void secureswi_receiveBytes(uint8_t len,uint8_t *stBuf) - Receive and decode data from the SWI bus.

Examples description

The application is composed of three sections :

  • System Initialization - Initialize the GPIO sturcture and configure the serial port for logging data.
  • Application Initialization - Initialize the driver and configure swi for communication.
  • Application Task - Data is read from the secure chip. If the readout is successful the data is then printed on the serial port in the hex format.
void applicationTask()
{
     uint8_t bufferOut[128];

     cfg_atsha204a_swi_default.iface_type  = ATCA_SWI_IFACE;
     cfg_atsha204a_swi_default.devtype     = ATSHA204A;
     cfg_atsha204a_swi_default.atcaswi.bus = 1;
     cfg_atsha204a_swi_default.wake_delay  = 2560;
     cfg_atsha204a_swi_default.rx_retries  = 10;

     atcab_init(&cfg_atsha204a_swi_default);

     mikrobus_logWrite("Starting test",_LOG_LINE);

     memset(bufferOut,0,127);

     if (atcab_read_serial_number(bufferOut) == ATCA_SUCCESS)
     {
         mikrobus_logWrite("rn Serial number: ",_LOG_LINE);
         secureswi_printHex(bufferOut,9);
     }
     else
     {
         mikrobus_logWrite("rn Reading serial number failed...",_LOG_LINE);
         secureswi_printHex(bufferOut,sizeof(bufferOut));
     }

     Delay_ms (1500);
     memset (bufferOut, 0x00, 128);
     if (atcab_read_config_zone(bufferOut) == ATCA_SUCCESS)
     {
        mikrobus_logWrite("rnrn First 32 bytes of device configuration: ",_LOG_LINE);
        secureswi_printHex(bufferOut,32);
     }
     else
     {
        mikrobus_logWrite("rnrn Reading config zone failed...",_LOG_LINE);
        secureswi_printHex(bufferOut,sizeof(bufferOut));
     }

     while(1)
     {

     }
}

Other mikroE Libraries used in the example:

  • Conversions
  • C_String
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

NFC 4 Click

0

NFC 4 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R3916, a multi-purpose NFC transceiver supporting passive peer-to-peer functionality and NFC card-emulation mode, as well as NFC reader operation from STMicroelectronics. It features high RF output power to directly drive an antenna etched on the PCB, alongside its tuning circuit, at high efficiency.

[Learn More]

Relay Click

0

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

[Learn More]

LR 11 915MHz Click

0

LR 11 Click - 915MHz is a compact add-on board for long-range, low-power wireless communication in IoT applications. This board features the 453-00139R, an ultra-low power LoraWAN module Ezurio (part of the RM126x series), integrating the Silicon Labs EFR32 SoC and the Semtech SX1262 radio. It supports LoRaWAN classes A, B, and C, offering secure, scalable, and bi-directional communication. It operates in the 902-928MHz frequency range with a typical transmit power of up to 22dBm and a communication range of up to 15km.

[Learn More]