TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139256 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42404 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ADC 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 324 times

Not followed.

License: MIT license  

ADC 8 Click is a high precision, low-power, 16-bit analog-to-digital converter (ADC), based around the ADS1115 IC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ADC 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ADC 8 Click" changes.

Do you want to report abuse regarding "ADC 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ADC 8 Click

ADC 8 Click is a high precision, low-power, 16-bit analog-to-digital converter (ADC), based around the ADS1115 IC.

adc8_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : I2C type

Software Support

We provide a library for the Adc8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Adc8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void adc8_cfg_setup ( adc8_cfg_t *cfg );

  • Initialization function.

    ADC8_RETVAL adc8_init ( adc8_t ctx, adc8_cfg_t cfg );

  • Click Default Configuration function.

    void adc8_default_cfg ( adc8_t *ctx );

Example key functions :

  • Get [Package] Diff channel voltage

    void adc8_get_diff_channel( adc8_t ctx, adc8_diff_volt_t volt );

  • Get [Package] Single channel voltage

    void adc8_get_single_channel( adc8_t ctx, adc8_single_volt_t volt );

  • Get interrupt pin state

    uint8_t adc8_get_interrupt_state( adc8_t *ctx );

Examples Description

The demo app shows voltage measurement across all singles and different channels.

The demo application is composed of two sections :

Application Init

Configuring Clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    adc8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    adc8_cfg_setup( &cfg );
    ADC8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    adc8_init( &adc8, &cfg );

    adc8_default_cfg( &adc8 );
    log_info( &logger, "---- ADC start ----" );
}

Application Task

Reads voltage from each channel one by one and the voltage difference between specified channels.

void application_task ( void )
{
    adc8_single_volt_t single_volt;
    adc8_diff_volt_t diff_volt;

    log_printf( &logger, "\r\n-----------------------------------" );

    // Single channel
    adc8_get_single_channel( &adc8, &single_volt );

    log_printf( &logger, "\r\n>>> SINGLE CHANNEL <<<<\r\n" );
    log_printf( &logger, "- CH 0: %.2f\r\n", single_volt.ch_0 );
    log_printf( &logger, "- CH 1: %.2f\r\n", single_volt.ch_1 );
    log_printf( &logger, "- CH 2: %.2f\r\n", single_volt.ch_2 );
    log_printf( &logger, "- CH 3: %.2f\r\n", single_volt.ch_3 );

    // Diff channel

    adc8_get_diff_channel( &adc8, &diff_volt );

    log_printf( &logger, "\r\n>>> DIFF CHANNEL <<<<\r\n" );
    log_printf( &logger, "- CH(0-1): %.2f\r\n", diff_volt.ch_0_1 );
    log_printf( &logger, "- CH(0-3): %.2f\r\n", diff_volt.ch_0_3 );
    log_printf( &logger, "- CH(1-3): %.2f\r\n", diff_volt.ch_1_3 );
    log_printf( &logger, "- CH(2-3): %.2f\r\n", diff_volt.ch_2_3 );

    Delay_ms ( 1000 );
}

Note

On the input channel AIN0, AIN1, AIN2 and AIN3 sets maximum voltage GND - 0.3V < VIN > VDD + 0.3V

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Adc8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp-Log 2 click

5

Temp-Log click 2 is a precise ambient temperature measurement device, equipped with the additional non-volatile (EEPROM) memory, which can be used to permanently store system configuration and log application specific or user preference data.

[Learn More]

RGB Driver click

5

RGB Driver click is an RGB LED driver, capable of driving RGB LEDs with the reasonably high amount of current, via the I2C interface.

[Learn More]

Smart SMS Relay Control Station

10

Using PICPLC4 v6, TelitGM862 GSM/GPRS module, Potentiometer Board, SHT1X Temperature and Humidity Sensor, and EasyInput Boards, we have created Smart SMS relay Control Station and an example which you can adjust according to your needs.

[Learn More]