TOP Contributors

  1. MIKROE (2653 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136721 times)
  2. FAT32 Library (69929 times)
  3. Network Ethernet Library (55939 times)
  4. USB Device Library (46265 times)
  5. Network WiFi Library (41885 times)
  6. FT800 Library (41168 times)
  7. GSM click (28979 times)
  8. PID Library (26412 times)
  9. mikroSDK (26357 times)
  10. microSD click (25355 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

6DOF IMU 7 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 98 times

Not followed.

License: MIT license  

6DOF IMU 7 click is based on the ICM-20649, a high-performance, 6-axis MEMS MotionTracking™ IC from TDK Invensense. It is an advanced, integrated microelectromechanical gyroscope and accelerometer sensor (MEMS). This allows very high integration and very small dimensions, at an affordable cost.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "6DOF IMU 7 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 7 click" changes.

Do you want to report abuse regarding "6DOF IMU 7 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


6DOF IMU 7 click

6DOF IMU 7 click is based on the ICM-20649, a high-performance, 6-axis MEMS MotionTracking™ IC from TDK Invensense. It is an advanced, integrated microelectromechanical gyroscope and accelerometer sensor (MEMS). This allows very high integration and very small dimensions, at an affordable cost.

6dofimu7_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the 6DofImu7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for 6DofImu7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void c6dofimu7_cfg_setup ( c6dofimu7_cfg_t *cfg );

  • Initialization function.

    C6DOFIMU7_RETVAL c6dofimu7_init ( c6dofimu7_t ctx, c6dofimu7_cfg_t cfg );

  • Click Default Configuration function.

    void c6dofimu7_default_cfg ( c6dofimu7_t *ctx );

Example key functions :

  • This function reads gyroscope axis data and configures the gyro axis struct.

    void c6dofimu7_get_gyro_data ( c6dofimu7_t ctx, c6dofimu7_axis_t gyro, float sensitivity );

  • This function reads accelerometer axis data and configures the accel axis struct.

    void c6dofimu7_get_accel_data ( c6dofimu7_t ctx, c6dofimu7_axis_t accel, float sensitivity );

  • This function reads and returns temperature data.

    float c6dofimu7_get_temp_data ( c6dofimu7_t *ctx, float temp_sensitivity, float temp_offset );

Examples Description

This example showcases how to initialize and configure the logger and click modules and read and display temperature measurements and axis data from the gyroscope and accelerometer.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and click modules.


void application_init ( )
{
    log_cfg_t log_cfg;
    c6dofimu7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    c6dofimu7_cfg_setup( &cfg );
    C6DOFIMU7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    c6dofimu7_init( &c6dofimu7, &cfg );
    c6dofimu7_default_cfg( &c6dofimu7 );
}

Application Task

This function reads and displays accelerometer, gyroscope and temperature data every second.


void application_task ( )
{
    float temperature;

    c6dofimu7_get_gyro_data( &c6dofimu7, &gyro, C6DOFIMU7_GYRO_SENSITIVITY );

    log_printf( &logger, " * Gyro_X: %.5f * \r\n", gyro.x_axis );
    log_printf( &logger, " * Gyro_Y: %.5f * \r\n", gyro.y_axis );
    log_printf( &logger, " * Gyro_Z: %.5f * \r\n", gyro.z_axis );
    log_printf( &logger, " ---------------------------- \r\n" );

    c6dofimu7_get_accel_data( &c6dofimu7, &accel, C6DOFIMU7_ACCEL_SENSITIVITY );

    log_printf( &logger, " * Accel_X: %.5f * \r\n", accel.x_axis );
    log_printf( &logger, " * Accel_Y: %.5f * \r\n", accel.y_axis );
    log_printf( &logger, " * Accel_Z: %.5f * \r\n", accel.z_axis );
    log_printf( &logger, " ---------------------------- \r\n" );

    temperature = c6dofimu7_get_temp_data( &c6dofimu7, C6DOFIMU7_TEMPERATURE_SENSITIVITY,
                                                       C6DOFIMU7_TEMPERATURE_OFFSET );

    log_printf( &logger, " * Temperature: %.5f C * \r\n\r\n", temperature );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.6DofImu7

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Color 14 click

0

Color 14 Click is a compact add-on board that represents an accurate color sensing solution. This board features the APDS-9151, an integrated RGB, ambient light sensing, IR LED, and a complete proximity detection system from Broadcom Limited.

[Learn More]

Clock Gen 4 click

5

Clock Gen 4 Click is a compact add-on board that contains both a clock generator and a multiplier/jitter reduced clock frequency synthesizer. This board features the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic.

[Learn More]

RN4870 click

0

RN4870 click carries the RN4870 Bluetooth® 4.2 low energy module from Microchip. The click is designed to run on a 3.3V power supply. It uses ASCII Command Interface over UART for communication with target microcontroller, with additional functionality provided by the following pins on the mikroBUS™ line: PWM, INT, RST, CS.

[Learn More]