TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140998 times)
  2. FAT32 Library (73529 times)
  3. Network Ethernet Library (58329 times)
  4. USB Device Library (48518 times)
  5. Network WiFi Library (44139 times)
  6. FT800 Library (43700 times)
  7. GSM click (30549 times)
  8. mikroSDK (29317 times)
  9. PID Library (27220 times)
  10. microSD click (26935 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 286 times

Not followed.

License: MIT license  

Accel 13 Click features an ultra-low power triaxial accelerometer sensor with embedded intelligence, labeled as the IIS2DLPC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 13 Click" changes.

Do you want to report abuse regarding "Accel 13 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel 13 Click

Accel 13 Click features an ultra-low power triaxial accelerometer sensor with embedded intelligence, labeled as the IIS2DLPC.

accel13_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Accel13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel13 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel13_cfg_setup ( accel13_cfg_t *cfg );

  • Initialization function.

    ACCEL13_RETVAL accel13_init ( accel13_t ctx, accel13_cfg_t cfg );

  • Click Default Configuration function.

    void accel13_default_cfg ( accel13_t *ctx );

Example key functions :

  • This function reads the status data and stores it in the status object.

    void accel13_get_status ( accel13_t ctx, accel13_status_t status);

  • This function reads the tap status data and stores it in the tap_status object.

    void accel13_get_tap_status ( accel13_t ctx, accel13_tap_t tap_status );

  • This function reads the 6D status data and stores it in the sixd_status object.

    void accel13_get_6d_status ( accel13_t ctx, accel13_6d_t sixd_status );

Examples Description

This application enables reading acceleration and tapping data on all 3 axes, using I2C or SPI communication.

The demo application is composed of two sections :

Application Init

Initializes driver init, Test communication, starts chip configuration for measurement and Temperature reads.


void application_init ( void )
{
    log_cfg_t log_cfg;
    accel13_cfg_t cfg;
    uint8_t device_id;
    float temperature;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    accel13_cfg_setup( &cfg );
    ACCEL13_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel13_init( &accel13, &cfg );

    accel13_generic_read_bytes( &accel13, ACCEL13_REG_WHO_AM_I, &device_id, 1 );

    if ( device_id != ACCEL13_DEF_WHO_AM_I )
    {
        log_printf( &logger, "*\\*/*\\*/ Communication ERROR !!! \\*/*\\*/*" );
        for ( ; ; );
    }
    log_printf( &logger, "---- Communication OK!!! ----\r\n" );
    Delay_100ms( );

    // Configuration

    accel13_default_cfg ( &accel13 );

    accel13_generic_write_single_byte( &accel13, ACCEL13_REG_CTRL_6, ACCEL13_CTRL6_BW_FILT_ODR_2 |
                                                                     ACCEL13_CTRL6_FULL_SCALE_2g |
                                                                     ACCEL13_CTRL6_FDS_LOW_PASS |
                                                                     ACCEL13_CTRL6_LOW_NOISE_ENABLE );

    // Temperature

    temperature = accel13_get_temperature( &accel13 );
    log_printf( &logger, " Temperature : %f.2 \r\n", temperature);
}

Application Task

Reads Accelerometer data and detects tap on the axis


void application_task ( void )
{
    //  Task implementation.

    // Reads Accel data
    accel13_get_axis_data( &accel13, &axis );

    log_printf( &logger, "---- Accel axis data ----\r\n\n" );

    log_printf( &logger, "* X : %d \r\n", axis.x );

    log_printf( &logger, "* Y : %d \r\n", axis.y);

    log_printf( &logger, "* Z : %d \r\n", axis.z);
    log_printf( &logger, "-------------------------\r\n" );
    Delay_ms ( 300 );

    // Detections Tap on the axis
    accel13_get_tap_status( &accel13, &tap );

    if ( tap.tap_x == 0x01 )
    {
        log_printf( &logger, "---- Tap on the X axis ----\r\n" );
    }

    if( tap.tap_y == 0x01 )
    {
        log_printf( &logger,"---- Tap on the Y axis ----\r\n" );
    }

    if( tap.tap_z == 0x01 )
    {
        log_printf( &logger,"---- Tap on the Z axis ----\r\n" );
    }
}

Note

The example is the basic functionality of the IIS2DLPC sensor, it is possible to read the acceleration data and detect Tap on all 3 axes. For other settings and improvements in reading accuracy, you need to further set up the registers and set the sensor to your conditions.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GSM 5 Click

0

GSM 5 Click is a compact add-on board representing a compact GSM cellular network communication solution. This board features the SARA-G450, a GSM/GPRS quad-band cellular module certified and approved by the main regulatory bodies and operators from u-blox. It features class 12 GSM/GPRS connectivity in the popular u-blox SARA form factor and comes with a comprehensive feature set, including an extensive set of internet protocols designed to provide fully integrated access to u-blox GNSS positioning with embedded A-GPS (AssistNow Online and AssistNow Offline) functionality. Besides a data rate up to 85.6 kbps and an advanced jamming detection feature, this board also offers a high-quality integrated audio interface allowing voice communication.

[Learn More]

Mikromedia 5 for STM32F7 Capacitive

0

This project contains example for testing modules on Mikromedia 5 for STM32F7 Capacitive.

[Learn More]

FT Click

0

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS™ socket. Leveraging FT, the most reliable and easiest-to-scale wired communications media, FT Click lets you network sensors and devices to create IoT solutions for automation and control networks that are easier to develop, integrate and install. This Click board™ supports full communication stacks for LON® and BACnet FT, as well as FTMQ (MQTT like messaging format) on board to simplify integration of BACnet, LON or custom IoT networks over twisted pair wire. FT Click is ideal for markets including smart buildings, cities, machines, agriculture, manufacturing, transportation and many more where wireless communications do not provide the required reliability and scale.

[Learn More]