TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140544 times)
  2. FAT32 Library (73037 times)
  3. Network Ethernet Library (58043 times)
  4. USB Device Library (48215 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28990 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Angle 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 262 times

Not followed.

License: MIT license  

Angle 4 Click is an angular magnetic rotary sensor, which can be used as a rotary encoder.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Angle 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Angle 4 Click" changes.

Do you want to report abuse regarding "Angle 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Angle 4 Click

Angle 4 Click is an angular magnetic rotary sensor, which can be used as a rotary encoder.

angle4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Angle4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Angle4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void angle4_cfg_setup ( angle4_cfg_t *cfg );

  • Initialization function.

    ANGLE4_RETVAL angle4_init ( angle4_t ctx, angle4_cfg_t cfg );

  • Click Default Configuration function.

    void angle4_default_cfg ( angle4_t *ctx );

Example key functions :

  • function used to start measurement mode.

    void angle4_start_mesuremenet ( angle4_t *ctx );

  • This function is used to retrieve Angle value depending on the given resolution.

    uint8_t angle4_get_new_angle ( angle4_t ctx, uint16_t data_out );

  • This function is used to read single byte of Data on the desired address.

    uint8_t angle4_read_byte ( angle4_t *ctx, uint8_t addr );

Examples Description

This application enables use of angular magnetic rotary sensor, which can be used as a rotary encoder.

The demo application is composed of two sections :

Application Init

Driver intialization, standard configurations and start measurement


void application_init ( void )
{
    log_cfg_t log_cfg;
    angle4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    angle4_cfg_setup( &cfg );
    ANGLE4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    angle4_init( &angle4, &cfg );

    angle4_default_cfg( &angle4, ANGLE4_CCFG2_DIR_COUNTER_CLOCKWISE_ROTATION,\
                                 ANGLE4_CCFG2_ABS_RESOLUTION_14bit );
    log_printf( &logger, " --- Start measurement \r\n");

    angle4_start_mesuremenet( &angle4 );
}

Application Task

Reads Angle in degreeses and logs data to USBUART every 200 ms.


void application_task ( void )
{
    //  Task implementation.

    uint16_t angle_value;

    angle4_get_new_angle( &angle4, &angle_value );
    log_printf( &logger, " Angle : %d deg\r\n", angle_value );
    Delay_ms ( 200 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Angle4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AccelQvar Click

0

Accel&Qvar Click is a compact add-on board for capturing precise acceleration measurements and detecting electric charge variations. This board features the LIS2DUXS12, an ultralow-power accelerometer from STMicroelectronics. Besides low power consumption, it also includes Qvar technology, artificial intelligence, and an anti-aliasing filter. This digital, 3-axis accelerometer has adjustable full scales (±2g to ±16g), output data rates (1.6Hz to 800Hz), and multiple operating modes to serve various applications.

[Learn More]

CAN Transmit Demo

0

The application demonstrates CAN Transmit functionality.

[Learn More]

TempHum 17 Click

0

Temp&Hum 17 Click is a compact add-on board that represents temperature and humidity sensing solutions. This board features the HS3001, a highly accurate, fully calibrated relative humidity and temperature sensor from Renesas. It features proprietary sensor-level protection, ensuring high reliability and long-term stability. Integrated calibration and temperature-compensation logic provides fully corrected RH and temperature values via standard I2C output. No user calibration of the output data is required.

[Learn More]