TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142051 times)
  2. FAT32 Library (75275 times)
  3. Network Ethernet Library (59484 times)
  4. USB Device Library (49508 times)
  5. Network WiFi Library (45281 times)
  6. FT800 Library (44906 times)
  7. GSM click (31423 times)
  8. mikroSDK (30431 times)
  9. microSD click (27793 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pressure 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 404 times

Not followed.

License: MIT license  

Pressure 8 Click is an accurate and fully calibrated pressure sensor, equipped with the MPR series integrated piezoresistive silicon pressure sensor IC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pressure 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pressure 8 Click" changes.

Do you want to report abuse regarding "Pressure 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pressure 8 Click

Pressure 8 Click is an accurate and fully calibrated pressure sensor, equipped with the MPR series integrated piezoresistive silicon pressure sensor IC.

pressure8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Pressure8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pressure8 Click driver.

Standard key functions :

  • pressure8_cfg_setup Config Object Initialization function.

    void pressure8_cfg_setup ( pressure8_cfg_t *cfg ); 
  • pressure8_init Initialization function.

    err_t pressure8_init ( pressure8_t *ctx, pressure8_cfg_t *cfg );

Example key functions :

  • pressure8_get_pressure Functions for get Pressure data

    float pressure8_get_pressure ( pressure8_t *ctx, uint8_t press_format );
  • pressure8_get_device_status Functions for get device status

    uint8_t pressure8_get_device_status ( pressure8_t *ctx );
  • pressure8_set_psi_range Functions for set PSI range

    void pressure8_set_psi_range ( pressure8_t *ctx, float psi_min, float psi_max );

Examples Description

This application reads pressure data.

The demo application is composed of two sections :

Application Init

Initialization device and logger module, reset device and set PSI range.

void application_init ( void )
{
    log_cfg_t log_cfg;
    pressure8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.
    pressure8_cfg_setup( &cfg );
    PRESSURE8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pressure8_init( &pressure8, &cfg );

    pressure8_device_reset( &pressure8 );
    pressure8_set_psi_range( &pressure8, 0, 25 );
    Delay_ms ( 1000 );

    log_info( &logger, " Application Task " );
}

Application Task

Reads pressure data in mBar and logs it on the USB UART once per second.

void application_task ( void )
{
    float pressure = 0;

    pressure = pressure8_get_pressure( &pressure8, PRESSURE8_DATA_IN_MBAR );
    log_printf( &logger, " Pressure: %.1f mBar\r\n", pressure );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pressure8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

6DOF IMU 11 click

5

The 6DOF IMU 11 click is a Click board based on the KMX63, a 6 Degrees-of-Freedom inertial sensor system on a single, silicon chip, which is designed to strike a balance between current consumption and noise performance with excellent bias stability over temperature.

[Learn More]

Accel 31 Click

0

Accel 31 Click is a compact add-on board designed for precise motion and orientation detection in space-constrained devices. This board features the BMA580, a triaxial low-g accelerometer from Bosch Sensortec, which offers a 16-bit digital resolution with measurement ranges of ±2, ±4, ±8, and ±16 g, along with flexible output data rates from 1.56Hz to 6.4kHz, enabling high adaptability and accuracy. The BMA580 supports advanced power modes, including high-performance and low-power, self-wake-up functionality, and bone conduction-based voice activity detection.

[Learn More]

UWB 2 Click

0

UWB 2 Click is a compact add-on board that brings Ultra-Wideband communication to any solution. This board features the DWM3000, an IEEE 802.15-z UWB transceiver module from Qorvo. This module fully aligns with FiRaTM PHY, MAC, and certification development. It uses an integrated UWB antenna to establish wireless communication in UWB channels 5 (6.5GHz) and 9 (8GHz). This Click board™ makes the perfect solution for developing precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]