TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59218 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 371 times

Not followed.

License: MIT license  

Proximity 3 Click is an intelligent proximity and light sensing device, which features the VCNL4200 sensor from Vishay - high sensitivity long distance proximity sensor (PS), ambient light sensor (ALS) and 940 nm IRED, all in one small package.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 3 Click" changes.

Do you want to report abuse regarding "Proximity 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Proximity 3 Click

Proximity 3 Click is an intelligent proximity and light sensing device, which features the VCNL4200 sensor from Vishay - high sensitivity long distance proximity sensor (PS), ambient light sensor (ALS) and 940 nm IRED, all in one small package.

proximity3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Proximity3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity3 Click driver.

Standard key functions :

  • proximity3_cfg_setup Config Object Initialization function.

    void proximity3_cfg_setup ( proximity3_cfg_t *cfg ); 
  • proximity3_init Initialization function.

    err_t proximity3_init ( proximity3_t *ctx, proximity3_cfg_t *cfg );
  • proximity3_default_cfg Click Default Configuration function.

    err_t proximity3_default_cfg ( proximity3_t *ctx );

Example key functions :

  • proximity3_write_16 This function writes data to the desired register.

    err_t proximity3_write_16 ( proximity3_t *ctx, uint8_t reg_address, uint16_t data_in );
  • proximity3_read_als This function gets the data returned by the ambient light sensor.

    uint16_t proximity3_read_als ( proximity3_t *ctx );
  • proximity3_read_proximity This function returns the proximity.

    uint16_t proximity3_read_proximity ( proximity3_t *ctx );

Examples Description

This application reads the raw ALS and proximity data from Proximity 3 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    proximity3_cfg_t proximity3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity3_cfg_setup( &proximity3_cfg );
    PROXIMITY3_MAP_MIKROBUS( proximity3_cfg, MIKROBUS_1 );
    if ( PROXIMITY3_ERROR == proximity3_init( &proximity3, &proximity3_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( PROXIMITY3_ERROR == proximity3_default_cfg ( &proximity3 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the raw ALS and proximity data and displays the results on the USB UART every 500ms.


void application_task ( void )
{
    uint16_t proximity = 0;
    uint16_t als = 0;

    proximity = proximity3_read_proximity( &proximity3 );
    log_printf( &logger, " Proximity: %u\r\n", proximity );

    als = proximity3_read_als( &proximity3 );
    log_printf( &logger, " ALS: %u\r\n", als );

    log_printf( &logger, "-----------------\r\n" );
    Delay_ms ( 500 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pressure 8 Click

0

Pressure 8 Click is an accurate and fully calibrated pressure sensor, equipped with the MPR series integrated piezoresistive silicon pressure sensor IC.

[Learn More]

FAN 8 Click

0

Fan 8 Click is a compact add-on board that represents a compliant fan controller. This board features the MAX6615, a fan-speed controller, and a dual-channel temperature monitor with external thermistor inputs from Maxim Integrated, now part of Analog Devices. The MAX6615 controls the speed of two cooling fans based on the temperatures of external thermistors and the device's internal temperature, reporting temperature values in a digital form using the I2C serial interface.

[Learn More]

Gyro click

0

This example demonstrates reading from Gyro click sensor (L3GD20) angular rate and then converting data to angular displacement by integration. Data is send via UART to PC terminal application.

[Learn More]