TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136806 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55951 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41191 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 6 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 159 times

Not followed.

License: MIT license  

RTC6 click carries Microchip’s MCP79410 Real-Time Clock/Calendar IC with built-in 64 bytes of battery-backed SRAM an additional 1 Kbit of EEPROM.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 6 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 6 click" changes.

Do you want to report abuse regarding "RTC 6 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RTC6 click

RTC6 click carries Microchip’s MCP79410 Real-Time Clock/Calendar IC with built-in 64 bytes of battery-backed SRAM an additional 1 Kbit of EEPROM.

rtc6_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Rtc6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rtc6 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rtc6_cfg_setup ( rtc6_cfg_t *cfg );

  • Initialization function.

    RTC6_RETVAL rtc6_init ( rtc6_t ctx, rtc6_cfg_t cfg );

  • Click Default Configuration function.

    void rtc6_default_cfg ( rtc6_t *ctx );

Example key functions :

  • This function enables automatic switch to battery on VCC failure.

    void rtc6_battery_enable ( rtc6_t *ctx );

  • This function gets current GMT time and sets it in the RTC.

    void rtc6_get_gmt_time ( rtc6_t ctx, rtc6_time_t gmt_time );

  • his function calculates current local time.

    void rtc6_get_local_time ( rtc6_t ctx, rtc6_time_t local_time );

Examples Description

This application enables usage of Real-TIme clock and calendar with alarm on RTC 6 click.

The demo application is composed of two sections :

Application Init

Initializes driver init, sets time zone, sets UTC-GMT time and alarm time


void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc6_cfg_t cfg;
    int8_t time_zone = 2;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rtc6_cfg_setup( &cfg );
    RTC6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rtc6_init( &rtc6, &cfg );

    // Set UTC time

    utc_time.seconds  = 40;
    utc_time.minutes  = 59;
    utc_time.hours    = 23;
    utc_time.monthday = 14;
    utc_time.month    = 12;
    utc_time.year     = 18;

    // Set alarm time

    alarm_time.seconds  = 0;
    alarm_time.minutes  = 0;
    alarm_time.hours    = 0;
    alarm_time.weekdays  = 0;
    alarm_time.monthday = 15;
    alarm_time.month    = 12;
    alarm_time.year     = 18;

    rtc6_default_cfg( &rtc6, time_zone, &utc_time, &alarm_time );
    log_info( &logger, " ----- Init successfully ----- " );
}

Application Task

Reads GMT time and Local time. Checks if the alarm is activated. If the alarm is active, it disable alarm and adjusts the new one within 20 seconds. Logs this data on USBUART every 900ms.


void application_task ( void )
{
    //  Task implementation.

    rtc6_get_gmt_time( &rtc6, &utc_time );
    rtc6_get_local_time( &rtc6, &local_time );

    log_printf( &logger, "--- UTC time ---\r\nTime : %d %d %d\r\n", utc_time.hours, utc_time.minutes, utc_time.seconds );

    log_printf( &logger, "Date : %d %d %d\r\n", utc_time.monthday, utc_time.month, utc_time.year );

    log_printf( &logger, "--- Local time ---\r\nTime : %d %d %d\r\n", local_time.hours, local_time.minutes, local_time.seconds );

    log_printf( &logger, "Date : %d %d %d\r\n \r\n", local_time.monthday, local_time.month, local_time.year );

    if ( rtc6_is_active_alarm( &rtc6 ) != 0 )
    {
        log_printf( &logger, " ----- Active alarm ----- \r\n" );
        rtc6_disable_alarm( &rtc6, RTC6_ALARM_0 );
        rtc6_repeat_alarm( &rtc6, RTC6_ALARM_0, 20 );
    }

    Delay_ms ( 900 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rtc6

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mikromedia+ for STM32 ARM - RF Communication Example

5

This is demonstration project how Mikromedia+ for STM communicate over RF. Data is send over simple 'led protocol' (1 byte command). Development board for STM32 with an add-on board nRF Click is used as a receiver device.

[Learn More]

Charger 18 click

0

Charger 18 Click is a compact add-on board representing a single-cell battery charger. This board features the LTC3553, a micropower, highly integrated power management, and battery charger for single-cell Li-Ion/Polymer battery applications from Analog Devices. Designed specifically for USB applications, it also includes a PowerPath manager with automatic load prioritization and input current limit, a battery charger, and numerous internal protection features. It also indicates a battery charge state, and it comes with a synchronous 200mA buck regulator and a 150mA low dropout linear regulator (LDO).

[Learn More]

7-SEG RGB click

0

7-SEG RGB click carries a full color single 7 segment digit display. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over the CS, and PWM pin on the mikroBUS line.

[Learn More]