We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: DAC
Downloaded: 256 times
Not followed.
License: MIT license
DAC 7 Click carries the AD5624R 12-bit buffered Digital-to-Analog Converter that converts digital value to the corresponding voltage level using external voltage reference.
Do you want to subscribe in order to receive notifications regarding "DAC 7 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 7 Click" changes.
Do you want to report abuse regarding "DAC 7 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3484_dac_7_click.zip [598.33KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DAC 7 Click carries the AD5624R 12-bit buffered Digital-to-Analog Converter that converts digital value to the corresponding voltage level using external voltage reference.
We provide a library for the Dac7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Dac7 Click driver.
Config Object Initialization function.
void dac7_cfg_setup ( dac7_cfg_t *cfg );
Initialization function.
DAC7_RETVAL dac7_init ( dac7_t ctx, dac7_cfg_t cfg );
Click Default Configuration function.
void dac7_default_cfg ( dac7_t *ctx );
This function set software reset of selected channel of AD5624R Quad, 12-bit nanoDACs on DAC 7 Click board.
DAC7_RETVAL_T dac7_sw_reset ( dac7_t *ctx );
This function set power mode of selected channel of AD5624R Quad, 12-bit nanoDACs on DAC 7 Click board.
DAC7_RETVAL_T dac7_set_power ( dac7_t *ctx, uint8_t pwr_en, uint8_t sel_ch );
This function set 12-bit value of 3-bit command definition to the target 3-bit address command of AD5624R Quad, 12-bit nanoDACs on DAC 7 Click board.
DAC7_RETVAL_T dac7_set_ch_voltage ( dac7_t *ctx, uint8_t addr_ch, uint16_t vol_val, uint16_t v_ref_mv );
DAC 7 Click carries the AD5624R 12-bit buffered Digital-to-Analog Converter that converts digital value to the corresponding voltage level using external voltage reference.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
dac7_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
Delay_ms ( 100 );
// Click initialization.
dac7_cfg_setup( &cfg );
DAC7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
dac7_init( &dac7, &cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " ------ DAC 7 Click ------\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
v_ref_sel = DAC7_VREF_5000mV;
if ( dac7_sw_reset( &dac7 ) == DAC7_SUCCESS )
{
log_printf( &logger, " Software reset \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 500 );
log_printf( &logger, "--------------------------\r\n\n" );
if ( dac7_set_power( &dac7, DAC7_PWR_ON_ENABLE, DAC7_SELECT_CHANNEL_ALL ) == DAC7_SUCCESS )
{
log_printf( &logger, " All channel Power On \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 500 );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " -- Initialization done. --\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
}
In this example, we adjust the DAC output voltage from 1000 mV to 4000 mV for the channels, starting from channel A to channel D and then set the DAC output voltage to 5000 mV for all channels. Results are being sent to UART Terminal where you can track their changes. All data logs write on USB UART changes every 5 sec.
void application_task ( void )
{
if ( dac7_set_ch_voltage ( &dac7, DAC7_ADDRESS_CHANNEL_A, 1000, v_ref_sel ) == DAC7_SUCCESS )
{
log_printf( &logger, " Channel A : 1000 mV \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "--------------------------\r\n\n" );
if ( dac7_set_ch_voltage ( &dac7, DAC7_ADDRESS_CHANNEL_B, 2000, v_ref_sel ) == DAC7_SUCCESS )
{
log_printf( &logger, " Channel B : 2000 mV \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "--------------------------\r\n\n" );
if ( dac7_set_ch_voltage ( &dac7, DAC7_ADDRESS_CHANNEL_C, 3000, v_ref_sel ) == DAC7_SUCCESS )
{
log_printf( &logger, " Channel C : 3000 mV \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "--------------------------\r\n\n" );
if ( dac7_set_ch_voltage ( &dac7, DAC7_ADDRESS_CHANNEL_D, 4000, v_ref_sel ) == DAC7_SUCCESS )
{
log_printf( &logger, " Channel D : 4000 mV \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "--------------------------\r\n\n" );
if ( dac7_set_ch_voltage ( &dac7, DAC7_ADDRESS_CHANNEL_ALL, 5000, v_ref_sel ) == DAC7_SUCCESS )
{
log_printf( &logger, " All Channels: 5000 mV \r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
for ( ; ; );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "--------------------------\r\n\n" );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.