TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142001 times)
  2. FAT32 Library (75241 times)
  3. Network Ethernet Library (59466 times)
  4. USB Device Library (49488 times)
  5. Network WiFi Library (45264 times)
  6. FT800 Library (44870 times)
  7. GSM click (31412 times)
  8. mikroSDK (30399 times)
  9. microSD click (27775 times)
  10. PID Library (27613 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 482 times

Not followed.

License: MIT license  

DC MOTOR 3 Click is a mikroBUS™ add-on board with a Toshiba TB6549FG full-bridge driver for direct current motors. The IC is capable of outputting currents of up to 3.5 A with 30V, making it suitable for high-power motors

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 3 Click" changes.

Do you want to report abuse regarding "DC Motor 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 3 Click

DC MOTOR 3 Click is a mikroBUS™ add-on board with a Toshiba TB6549FG full-bridge driver for direct current motors. The IC is capable of outputting currents of up to 3.5 A with 30V, making it suitable for high-power motors

dcmotor3_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor3_cfg_setup ( dcmotor3_cfg_t *cfg );

  • Initialization function.

    DCMOTOR3_RETVAL dcmotor3_init ( dcmotor3_t ctx, dcmotor3_cfg_t cfg );

  • Click Default Configuration function.

    void dcmotor3_default_cfg ( dcmotor3_t *ctx );

Example key functions :

  • This function set the direction of rotation in the clockwise direction by sets AN pin and clear RST pin.

    void dcmotor3_clockwise ( dcmotor3_t *ctx );

  • This function set the direction of rotation in the counter clockwise direction by clear AN pin and sets RST pin.

    void dcmotor3_counter_clockwise ( dcmotor3_t *ctx );

  • This function brake the engine by sets AN and RST pins on DC Motor 3 Click board.

    void dcmotor3_short_brake ( dcmotor3_t *ctx );

Examples Description

This Click has four operating modes: clockwise, counter-clockwise, short brake and stop. The operating mode is configured through IN1 and IN2 pins.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO, PWM initialization, set PWM duty cycle and PWM frequency, start PWM, enable the engine, and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor3_cfg_setup( &cfg );
    DCMOTOR3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor3_init( &dcmotor3, &cfg );

    dcmotor3_set_duty_cycle ( &dcmotor3, 0.0 );
    dcmotor3_pwm_start( &dcmotor3 );
    Delay_ms ( 1000 );
    dcmotor3_enable( &dcmotor3 );
    Delay_ms ( 1000 );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is a example which demonstrates the use of DC Motor 3 Click board. DC Motor 3 Click communicates with register via PWM interface. It shows moving in the left direction from slow to fast speed and from fast to slow speed. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    if ( dcmotor3_direction == 1 )
    {
        dcmotor3_clockwise( &dcmotor3 );
        log_printf( &logger, ">>>> CLOCKWISE " );
        dcmotor3_enable ( &dcmotor3 );
    }
    else
    {
        dcmotor3_counter_clockwise( &dcmotor3 );
        log_printf( &logger, "<<<< COUNTER CLOCKWISE " );
        dcmotor3_enable ( &dcmotor3 );
    }

    dcmotor3_set_duty_cycle ( &dcmotor3, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;

        if ( dcmotor3_direction == 1 )
        {
            dcmotor3_direction = 0;
        }
        else if ( dcmotor3_direction == 0 )
        {
            dcmotor3_direction = 1;
        }
    }
    duty_cnt += duty_inc;
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1-US Click

0

LTE Cat.1-US Click is a Click board™ based on Thales Cinterion® ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks. The best in class solution enables M2M optimized speeds of 10Mbit/s download and 5Mbit/s uplink making it ideal for the vast number of M2M and industrial IoT applications that are not dependent on speed but that requires the longevity of LTE networks, while still providing 3G and 2G connectivity to ensure complete population and geographic coverage as LTE rolls out.

[Learn More]

IR click

0

IR Click is an add-on board in mikroBUS form factor. It features TSOP38338 IR receiver module as well as QEE113 IR emitting diode. IR Clickâ„¢ communicates with the target microcontroller via mikroBUSâ„¢ UART (Tx and Rx) or AN and PWM lines. Jumpers J2 and J3 enable you to choose between these two ways. The board uses a 3.3V or 5V power supply.

[Learn More]

LED Driver 11 Click

0

LED Driver 11 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the WLMDU9456001JT (172946001), a fully integrated constant current LED driver with the buck switching regulator and inductor in a single package from Würth Elektronik.

[Learn More]