TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (130 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140931 times)
  2. FAT32 Library (73497 times)
  3. Network Ethernet Library (58292 times)
  4. USB Device Library (48477 times)
  5. Network WiFi Library (44080 times)
  6. FT800 Library (43651 times)
  7. GSM click (30534 times)
  8. mikroSDK (29257 times)
  9. PID Library (27199 times)
  10. microSD click (26925 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ECG 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 407 times

Not followed.

License: MIT license  

ECG 3 Click is a complete solution for ECG and HR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE). ECG 3 Click uses the MAX30003 IC, an ultra-low power, single-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of heart rate and ECG monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG 3 Click is also equipped with the 3.5mm electrodes connector, making it ready to be used out of the box.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ECG 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ECG 3 Click" changes.

Do you want to report abuse regarding "ECG 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ECG 3 Click

ECG 3 Click is a complete solution for ECG and HR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE). ECG 3 Click uses the MAX30003 IC, an ultra-low power, single-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of heart rate and ECG monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG 3 Click is also equipped with the 3.5mm electrodes connector, making it ready to be used out of the box.

ecg3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Ecg3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ecg3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ecg3_cfg_setup ( ecg3_cfg_t *cfg );

  • Initialization function.

    ECG3_RETVAL ecg3_init ( ecg3_t ctx, ecg3_cfg_t cfg );

  • Click Default Configuration function.

    void ecg3_default_cfg ( ecg3_t *ctx );

Example key functions :

  • Function reads ECG data from FIFO register.

    void ecg3_get_ecg ( ecg3_t ctx, uint32_t out_ecg );

  • Function checks a status flag for the desired interrupt.

    uint8_t ecg3_check_status ( ecg3_t *ctx, uint32_t bit_mask );

  • Function reads Heart Rate and R - R data and calculates HR data to BPM, and RR data to ms.

    void ecg3_get_rtor ( ecg3_t ctx, uint16_t out_hr, uint16_t *out_rr );

Examples Description

This Click is made for ECG and HR, equipped with an ultra-low power, single channel, integrated biopotential AFE, with the ECG and R-to-R detection functionality.

The demo application is composed of two sections :

Application Init

Initializes SPI interface and performs the all necessary configuration for device to work properly.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ecg3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ecg3_cfg_setup( &cfg );
    ECG3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ecg3_init( &ecg3, &cfg );

    ecg3_sw_reset( &ecg3 );
    ecg3_fifo_reset( &ecg3 );
    Delay_ms ( 100 );

    ecg3_default_cfg ( &ecg3 );
    Delay_ms ( 300 );
}

Application Task

Reads ECG Data every 8ms and sends this data to the serial plotter.


void application_task ( void )
{
    ecg3_get_ecg( &ecg3, &ecg_data );

    plot_ecg( );
} 

Note

Additional Functions :

  • void plot_ecg() - Sends ECG Data to the serial plotter.
  • void logrtor() - Sends Heart Rate and R - R Data to the uart terminal.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ecg3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C Extend click

5

I2C Extend Click is a compact add-on board for applications that require extending the I2C communication bus over a long distance.[MS1] This board features the LTC4331 - an I2C slave device extender over a rugged differential link, from Analog Devices.

[Learn More]

Magnetic Rotary 5 Click

0

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

[Learn More]

Earthquake click

7

Earthquake click carries D7S, the world’s smallest high-precision seismic sensor from Omron. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target MCU over I2C interface, with additional functionality provided by the following pins on the mikroBUS line: PWM, INT, CS.

[Learn More]