TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141690 times)
  2. FAT32 Library (74759 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44525 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Excelon LP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 385 times

Not followed.

License: MIT license  

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Excelon LP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Excelon LP Click" changes.

Do you want to report abuse regarding "Excelon LP Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Excelon LP Click

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

excelonlp_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the ExcelonLP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ExcelonLP Click driver.

Standard key functions :

  • Config Object Initialization function.

    void excelonlp_cfg_setup ( excelonlp_cfg_t *cfg );

  • Initialization function.

    EXCELONLP_RETVAL excelonlp_init ( excelonlp_t ctx, excelonlp_cfg_t cfg );

Example key functions :

  • Functions for send opcode command

    void excelonlp_send_command ( excelonlp_t *ctx, uint8_t opcode );

  • Functions for read data

    void excelonlp_read_data ( excelonlp_t ctx, uint8_t opcode, uint8_t out_buf, uint8_t n_data);

  • Functions for write data to memory

    void excelonlp_write_memory_data ( excelonlp_t *ctx, uint8_t opcode, uint32_t addr, uint8_t c_data);

Examples Description

This application writes in RAM memory and read from RAM memory.

The demo application is composed of two sections :

Application Init

Initializes Device init


void application_init ( void )
{
    log_cfg_t log_cfg;
    excelonlp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    excelonlp_cfg_setup( &cfg );
    EXCELONLP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    excelonlp_init( &excelonlp, &cfg );
}

Application Task

Reads device ID, writes 6-bytes (MikroE) to memory and reads 6-bytes from memory


void application_task ( )
{
    uint8_t out_buf[ 20 ] = { 0 };
    uint8_t cnt;
    char memory_data[ 3 ];
    uint8_t send_buffer[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
    uint32_t memory_address = 0x00000055;

    log_printf( &logger, "Read Device ID: " );
    excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
    excelonlp_read_data( &excelonlp, EXCELONLP_OPCODE_READ_DEVICE_ID, &out_buf[ 0 ], 9 );
    for( cnt = 0; cnt < 9; cnt++ )
    {
        log_printf( &logger, " 0x", out_buf );
        Delay_100ms();
    }
    log_printf( &logger, "\r\n" );

   log_printf( &logger, "Write MikroE data." );
   excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
        excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
        excelonlp_write_memory_data( &excelonlp, EXCELONLP_OPCODE_WRITE_MEMORY_DATA, memory_address++, send_buffer[ cnt ] );
        Delay_100ms();
   }
   memory_address = 0x00000055;
   log_printf( &logger, "Read memory data: " );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
       memory_data[ 0 ] = excelonlp_read_memory_data( &excelonlp, EXCELONLP_OPCODE_READ_MEMORY_DATA, memory_address++ );
       log_printf( &logger, " %d", memory_address );
       Delay_100ms();
   }
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ExcelonLP

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ADC 20 Click

0

ADC 20 Click is a compact add-on board with a high-performance data converter. This board features the TLA2518, an SPI-configurable eight-channel 12-bit successive approximation register analog-to-digital converter (SAR ADC) from Texas Instruments. The TLA2518 has an internal oscillator for the ADC conversion and supports averaging multiple data samples with a single conversion start. Also, the built-in programmable averaging filters help reduce noise from the analog inputs and reduce the number of data samples required to be read by the host MCU. All eight channels can be used as analog inputs, with the addition that the four channels can be used as digital inputs or digital outputs.

[Learn More]

TempHum 11 Click

0

Temp-hum 11 Click is a temperature and humidity sensing Click board™, equipped with the HDC1080, a high accuracy digital humidity, and temperature sensor. Its key features are its low power consumption, and the measurement accuracy achieved with that much energy.

[Learn More]

Balancer 2 click

5

Balancer 2 Click is an overvoltage protection device for a 2-series cell lithium-ion battery. Click contains two separate overvoltage battery detection circuits and automatic cell imbalance correction.

[Learn More]