TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141265 times)
  2. FAT32 Library (74088 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48822 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29653 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Excelon LP Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: FRAM

Downloaded: 332 times

Not followed.

License: MIT license  

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Excelon LP Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Excelon LP Click" changes.

Do you want to report abuse regarding "Excelon LP Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Excelon LP Click

Excelon LP Click carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics comparable to much faster DRAM memory modules.

excelonlp_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the ExcelonLP Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ExcelonLP Click driver.

Standard key functions :

  • Config Object Initialization function.

    void excelonlp_cfg_setup ( excelonlp_cfg_t *cfg );

  • Initialization function.

    EXCELONLP_RETVAL excelonlp_init ( excelonlp_t ctx, excelonlp_cfg_t cfg );

Example key functions :

  • Functions for send opcode command

    void excelonlp_send_command ( excelonlp_t *ctx, uint8_t opcode );

  • Functions for read data

    void excelonlp_read_data ( excelonlp_t ctx, uint8_t opcode, uint8_t out_buf, uint8_t n_data);

  • Functions for write data to memory

    void excelonlp_write_memory_data ( excelonlp_t *ctx, uint8_t opcode, uint32_t addr, uint8_t c_data);

Examples Description

This application writes in RAM memory and read from RAM memory.

The demo application is composed of two sections :

Application Init

Initializes Device init


void application_init ( void )
{
    log_cfg_t log_cfg;
    excelonlp_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    excelonlp_cfg_setup( &cfg );
    EXCELONLP_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    excelonlp_init( &excelonlp, &cfg );
}

Application Task

Reads device ID, writes 6-bytes (MikroE) to memory and reads 6-bytes from memory


void application_task ( )
{
    uint8_t out_buf[ 20 ] = { 0 };
    uint8_t cnt;
    char memory_data[ 3 ];
    uint8_t send_buffer[ 7 ] = { 'M', 'i', 'k', 'r', 'o', 'E', 0 };
    uint32_t memory_address = 0x00000055;

    log_printf( &logger, "Read Device ID: " );
    excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
    excelonlp_read_data( &excelonlp, EXCELONLP_OPCODE_READ_DEVICE_ID, &out_buf[ 0 ], 9 );
    for( cnt = 0; cnt < 9; cnt++ )
    {
        log_printf( &logger, " 0x", out_buf );
        Delay_100ms();
    }
    log_printf( &logger, "\r\n" );

   log_printf( &logger, "Write MikroE data." );
   excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
        excelonlp_send_command( &excelonlp, EXCELONLP_OPCODE_SET_WRITE_ENABLE_LATCH );
        excelonlp_write_memory_data( &excelonlp, EXCELONLP_OPCODE_WRITE_MEMORY_DATA, memory_address++, send_buffer[ cnt ] );
        Delay_100ms();
   }
   memory_address = 0x00000055;
   log_printf( &logger, "Read memory data: " );
   for ( cnt = 0; cnt < 6; cnt++ )
   {
       memory_data[ 0 ] = excelonlp_read_memory_data( &excelonlp, EXCELONLP_OPCODE_READ_MEMORY_DATA, memory_address++ );
       log_printf( &logger, " %d", memory_address );
       Delay_100ms();
   }
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
   Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ExcelonLP

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Air quality 5 Click

0

Air quality 5 Click is a triple MOS sensor on a single Click board™, which can detect gas pollution for a number of different gases. The onboard sensor is specially designed to detect the pollution from automobile exhausts, as well as the gas pollution from the industrial or agricultural industry.

[Learn More]

Magnetic Rotary 5 Click

0

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

[Learn More]

Hall Current 4 Click

0

The Hall Current 4 Click is designed to measure relatively high current by using the integrated ACS70331 sensor.

[Learn More]