TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42556 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FLAME Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 224 times

Not followed.

License: MIT license  

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FLAME Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FLAME Click" changes.

Do you want to report abuse regarding "FLAME Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

FLAME Click

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

flame_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Flame Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flame Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flame_cfg_setup ( flame_cfg_t *cfg );

  • Initialization function.

    FLAME_RETVAL flame_init ( flame_t ctx, flame_cfg_t cfg );

Example key functions :

  • Check the flame status function.

    uint8_t flame_check_status ( flame_t *ctx );

  • Get interrupt status.

    uint8_t flame_get_interrupt ( flame_t *ctx );

Examples Description

This application detects fire.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flame_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    flame_cfg_setup( &cfg );
    FLAME_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flame_init( &flame, &cfg );
}

Application Task

This is a example which demonstrates the use of Flame Click board.


void application_task ( void )
{
    //  Task implementation.

    flame_state = flame_check_status ( &flame );

    if ( ( flame_state == 1 ) && ( flame_state_old == 0) )
    {
        log_printf( &logger, "  ~  FLAME   ~ \r\n " );

        flame_state_old = 1;
    }

    if ( ( flame_state == 0 ) && ( flame_state_old == 1 ) )
    {
        log_printf( &logger, "   NO FLAME  \r\n " );
        flame_state_old = 0;
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flame

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1-US click

5

LTE Cat.1-US click is a Click board based on Thales Cinterion ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks.

[Learn More]

BATT-MON 3 Click

0

BATT-MON 3 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the BQ35100, battery fuel gauge, and end-of-service monitor from Texas Instruments. The BQ35100 provides highly configurable fuel gauging for non-rechargeable (primary) lithium batteries without requiring a forced battery discharge. It uses patented TI gauging algorithms to support the option to replace an old battery with a new one seamlessly. It provides accurate results with ultra-low average power consumption, alongside an I2C interface through which the host can read the gathered data.

[Learn More]

GNSS 5 click

6

Determine your current position with GNSS 5 click. It carries the NEO-M8N GNSS receiver module from u-blox. GNSS 5 click is designed to run on a 3.3V power supply. The click communicates with the target microcontroller over I2C or UART interface.

[Learn More]