TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141830 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49310 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31288 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FLAME Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 485 times

Not followed.

License: MIT license  

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FLAME Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FLAME Click" changes.

Do you want to report abuse regarding "FLAME Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

FLAME Click

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

flame_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Flame Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flame Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flame_cfg_setup ( flame_cfg_t *cfg );

  • Initialization function.

    FLAME_RETVAL flame_init ( flame_t ctx, flame_cfg_t cfg );

Example key functions :

  • Check the flame status function.

    uint8_t flame_check_status ( flame_t *ctx );

  • Get interrupt status.

    uint8_t flame_get_interrupt ( flame_t *ctx );

Examples Description

This application detects fire.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flame_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    flame_cfg_setup( &cfg );
    FLAME_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flame_init( &flame, &cfg );
}

Application Task

This is a example which demonstrates the use of Flame Click board.


void application_task ( void )
{
    //  Task implementation.

    flame_state = flame_check_status ( &flame );

    if ( ( flame_state == 1 ) && ( flame_state_old == 0) )
    {
        log_printf( &logger, "  ~  FLAME   ~ \r\n " );

        flame_state_old = 1;
    }

    if ( ( flame_state == 0 ) && ( flame_state_old == 1 ) )
    {
        log_printf( &logger, "   NO FLAME  \r\n " );
        flame_state_old = 0;
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flame

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

H-Bridge 3 Click

0

H-Bridge 3 Click is designed for the control of small DC motors and inductive loads, it features TLE9201SG a general purpose 6A H-Bridge perfectly suited for industrial and automotive applications. This IC meets the harsh automotive environmental conditions and it is qualified in accordance with the AEC-Q100 standard, also has set of features such as the short circuit and over-temperature protection, under-voltage protection, detailed SPI diagnosis or simple error flag and fully 3.3/5.5V compatible logic inputs.

[Learn More]

ADC 4 Click

0

ADC 4 Click is an advanced analog to digital multichannel converter, which can sample inputs from 16 single-ended channels or 8 differential input channel pairs.

[Learn More]

Remote Weather Station with ClickCloud - GSM platform

0

What is the weather going to be like today? That’s the first question everyone asks in the morning. With this innovative project you can measure temperature and humidity in real time! You can even access this data remotely via the G2C 3G Click, a reliable connection to the Click Cloud platform, a cloud-based rapid prototyping environment.

[Learn More]