TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140767 times)
  2. FAT32 Library (73354 times)
  3. Network Ethernet Library (58198 times)
  4. USB Device Library (48383 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43537 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Gyro Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 313 times

Not followed.

License: MIT license  

Gyro Click is an add-on board in mikroBUS form factor. It features L3GD20 three-axis digital gyroscope module capable of providing the measured angular rate, as well as ambient temperature.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Gyro Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro Click" changes.

Do you want to report abuse regarding "Gyro Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Gyro Click

Gyro Click is an add-on board in mikroBUS form factor. It features L3GD20 three-axis digital gyroscope module capable of providing the measured angular rate, as well as ambient temperature.

gyro_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Gyro Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gyro Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gyro_cfg_setup ( gyro_cfg_t *cfg );

  • Initialization function.

    GYRO_RETVAL gyro_init ( gyro_t ctx, gyro_cfg_t cfg );

  • Click Default Configuration function.

    void gyro_default_cfg ( gyro_t *ctx );

Example key functions :

  • Function get data from two L3GD20 register.

    int16_t gyro_get_axis( gyro_t *ctx, uint8_t adr_reg_low )

  • Function read Gyro X-axis, Y-axis and Z-axis axis.

    void gyro_read_gyro( gyro_t ctx, int16_t gyro_x, int16_t gyro_y, int16_t gyro_z );

  • Function read temperature data.

    uint8_t gyro_read_temperature ( gyro_t *ctx );

Examples Description

This example displays values of Gyro sensor (x, y, z axis)

The demo application is composed of two sections :

Application Init

Initialization driver, initialize L3GD20 register and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    gyro_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gyro_cfg_setup( &cfg );
    GYRO_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gyro_init( &gyro, &cfg );
    gyro_default_cfg ( &gyro);
}

Application Task

This is a example which demonstrates the use of Gyro Click board. Measured Gyro coordinates ( X-axis, Y-axis, Z-axis ) and temperature in degrees C are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for every 2 sec.


void application_task ( void )
{
    //  Task implementation.

    gyro_read_gyro(  &gyro, &gyrox,  &gyroy, &gyroz );
    temperature = gyro_read_temperature( &gyro );

    log_printf( &logger, " Axis X : %d \r\n", gyrox );
    log_printf( &logger, " Axis Y : %d \r\n", gyroy );
    log_printf( &logger, " Axis Z : %d \r\n", gyroz );
    log_printf( &logger, " Temp.: %.2f C\r\n", temperature );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gyro

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

6DOF IMU 4 click

5

6DOF IMU 4 Click is an advanced 6-axis motion tracking Click board, which utilizes the ICM-20602, a high-performance integrated motion sensor, equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

[Learn More]

Cap Touch 2 click example

0

This example is made to demonstrate the operation of the Cap Touch 2 click.

[Learn More]

PWM Click

1

PWM click is a simple solution for controlling 16 PWM outputs through a single I2C interface. The click board carries the PCA9685PW IC. It is designed to use either a 3.3V or 5V power supply. The board also uses a LOW Output Enable Input pin (OE), which is in place of the default mikroBUS RST pin.

[Learn More]