TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142096 times)
  2. FAT32 Library (75363 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49549 times)
  5. Network WiFi Library (45355 times)
  6. FT800 Library (44975 times)
  7. GSM click (31485 times)
  8. mikroSDK (30544 times)
  9. microSD click (27865 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ir Eclipse Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 502 times

Not followed.

License: MIT license  

IR eclipse Click carries an EE-SX198 photo interrupter sensor. This sensor consists of an infrared transmitter and receiver facing each other and spaced apart by a 3mm slit.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ir Eclipse Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ir Eclipse Click" changes.

Do you want to report abuse regarding "Ir Eclipse Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ir Eclipse Click

IR eclipse Click carries an EE-SX198 photo interrupter sensor. This sensor consists of an infrared transmitter and receiver facing each other and spaced apart by a 3mm slit.

ireclipse_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the IrEclipse Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for IrEclipse Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ireclipse_cfg_setup ( ireclipse_cfg_t *cfg );

  • Initialization function.

    IRECLIPSE_RETVAL ireclipse_init ( ireclipse_t ctx, ireclipse_cfg_t cfg );

  • Click Default Configuration function.

    void ireclipse_default_cfg ( ireclipse_t *ctx );

Example key functions :

  • Detecting states of IR beam from EE-SX198 photo interrupter sensor.

    uint8_t ireclipse_int_status ( ireclipse_t *ctx );

Examples Description

This is an example of IR ECLIPSE Click board.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ireclipse_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf(&logger, "- Application Init -\r\n");

    //  Click initialization.

    ireclipse_cfg_setup( &cfg );
    IRECLIPSE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ireclipse_init( &ireclipse, &cfg );
    log_printf( &logger, "--------------------\r\n" );
    log_printf( &logger, "   Start counting:  \r\n" );
    log_printf( &logger, "--------------------\r\n" );

    n_cnt = IRECLIPSE_START_CNT_VAL;
    state_old = IRECLIPSE_LOW;
    state_new = IRECLIPSE_LOW;
}

Application Task

This is a example which demonstrates the use of IR eclipse Click board. When the beam from the transmitter is eclipsed by placing an object in the gap ( like a piece of paper ), when the sensor is triggered, the counter is incremented by one. Results are being sent to the Usart Terminal where you can track their changes. Data logs on usb uart when the sensor is triggered.


void application_task ( void )
{
    state_new = ireclipse_int_status( &ireclipse );

    if ( ( state_new == IRECLIPSE_HIGH ) && ( state_old == IRECLIPSE_LOW ) )
    {
        state_old = IRECLIPSE_HIGH;
        log_printf( &logger, "  Counter = %d \r\n", n_cnt );

        n_cnt++;
    }

    if ( ( state_new == IRECLIPSE_LOW ) && ( state_old == IRECLIPSE_HIGH ) )
    {
        log_printf( &logger, "--------------------\r\n" );
        state_old = IRECLIPSE_LOW;
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IrEclipse

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buck 11 click

5

Buck 11 click is a high-efficiency step-down converter which provides 3.3V on its output, derived from the connected power supply voltage, in the range from 4.2V to 60V.

[Learn More]

Nano Power 2 Click

0

Nano Power 2 Click is a very low power voltage comparator, aimed at portable and battery-powered applications. It allows detecting a difference of two voltage potentials, applied on two input pins.

[Learn More]

4x4 RGB 2 Click

0

4x4 RGB 2 Click is a compact add-on board that contains a matrix of 16 intelligent RGB LEDs, forming a 4x4 display screen. This board features 16 IN-PC55TBTRGB, 5x5mm RGB LEDs with an integrated IC from Inolux. The LEDs feature an 8-bit color control in 256 steps (256-level greyscale) and a 5-bit brightness control in 32 steps. The intelligent LEDs are cascaded (daisy-chained); thus, every one of them can communicate with the host MCU using the same data lines.

[Learn More]