TOP Contributors

  1. MIKROE (2750 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139022 times)
  2. FAT32 Library (71563 times)
  3. Network Ethernet Library (56975 times)
  4. USB Device Library (47295 times)
  5. Network WiFi Library (43003 times)
  6. FT800 Library (42291 times)
  7. GSM click (29727 times)
  8. mikroSDK (27853 times)
  9. PID Library (26846 times)
  10. microSD click (26093 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LDC 1000 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Inductance

Downloaded: 243 times

Not followed.

License: MIT license  

LDC1000 Click carries the world's first inductance-to-digital converter IC, along with a detachable sensor (an LC tank comprising a 36-turn PCB coil and a 100pF 1% NPO capacitor). The LDC1000 IC has a sub-micron resolution in short range applications; the board is ideal for highly precise short range measurements of the position, motion or composition of conductive targets.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LDC 1000 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LDC 1000 Click" changes.

Do you want to report abuse regarding "LDC 1000 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LDC 1000 Click

LDC1000 Click carries the world's first inductance-to-digital converter IC, along with a detachable sensor (an LC tank comprising a 36-turn PCB coil and a 100pF 1% NPO capacitor). The LDC1000 IC has a sub-micron resolution in short range applications; the board is ideal for highly precise short range measurements of the position, motion or composition of conductive targets.

ldc1000_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Ldc1000 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ldc1000 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ldc1000_cfg_setup ( ldc1000_cfg_t *cfg );

  • Initialization function.

    LDC1000_RETVAL ldc1000_init ( ldc1000_t ctx, ldc1000_cfg_t cfg );

  • Click Default Configuration function.

    void ldc1000_default_cfg ( ldc1000_t *ctx );

Example key functions :

  • This function reads the proximity data.

    uint16_t ldc1000_get_proximity_data ( ldc1000_t *ctx );

  • This function reads the inductance data.

    float ldc1000_get_inductance_data ( ldc1000_t *ctx );

  • This function reads the input voltage from the INT pin.

    uint8_t ldc1000_get_int_input ( ldc1000_t *ctx );

Examples Description

This example showcases how to initialize and configure the logger and Click modules and read and display proximity and impendance data.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules. Configuration data is written to the: rp maximum/minimum, sensor frequency, LDC/Clock/Power registers.


void application_init ( )
{
    log_cfg_t log_cfg;
    ldc1000_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ldc1000_cfg_setup( &cfg );
    LDC1000_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ldc1000_init( &ldc1000, &cfg );
    Delay_100ms( );
    ldc1000_default_cfg( &ldc1000 );
    Delay_100ms( );
}

Application Task

This function reads and displays proximity and impendance data every 10th of a second.


void application_task ( )
{
    uint16_t proximity;
    uint16_t inductance;

    proximity = ldc1000_get_proximity_data( &ldc1000 );
    inductance = ldc1000_get_inductance_data( &ldc1000 );

    if ( ( ( proximity - old_proximity ) > LDC1000_SENSITIVITY ) &&
         ( ( old_proximity - proximity ) > LDC1000_SENSITIVITY ) )
    {
        log_printf( &logger, " * Proximity: %d \r\n", proximity );

        log_printf( &logger, " * Impendance: %f uH\r\n", inductance );

        old_proximity = proximity;

        log_printf( &logger, "--------------------\r\n" );
        Delay_100ms();
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ldc1000

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GSM 2 Click

0

GSM2 Click is a compact quad-band GSM cellular network communication solution, featuring the GSM/GPRS Quectel M95. This module features a full set of options for the cellular networking and communication, such as the network status indication, jamming detection, embedded internet protocols, including TCP/IP, UDP, FTP, PPP, HTTP, SMTP, full GPRS multislot class 12 implementation, it is fully compliant to GSM Phase 2/2+, and more. Data communication speed is rated up to 85.6 kbps for both uplink and downlink connection.

[Learn More]

3D Hall 3 Click

0

3D Hall 3 Click is a very accurate, magnetic field sensing Click board™, used to measure the intensity of the magnetic field across three perpendicular axes.

[Learn More]

Expand 8 click

5

Expand 8 Click is a compact add-on board that contains a multi-port I/O expander with bi-directional input/outputs. This board features the MAX7317, 10-Port SPI-interfaced I/O expander with overvoltage and hot-insertion protection from Maxim Integrated. The MAX7317 provides microprocessors with 10 I/O ports rated to 7V. Each port can be individually configured as either an open-drain output or an overvoltage-protected Schmitt input that supports hot insertion. All port pins remain high impedance in Power-Down mode with up to 8V asserted on them.

[Learn More]