TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139271 times)
  2. FAT32 Library (71757 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47433 times)
  5. Network WiFi Library (43098 times)
  6. FT800 Library (42409 times)
  7. GSM click (29835 times)
  8. mikroSDK (28106 times)
  9. PID Library (26886 times)
  10. microSD click (26200 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED DRIVER Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 202 times

Not followed.

License: MIT license  

This application controls the brightness.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED DRIVER Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED DRIVER Click" changes.

Do you want to report abuse regarding "LED DRIVER Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED DRIVER Click

LED driver Click carries the MCP1662 high-voltage step-up voltage driver from Microchip. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over PWM pin on the mikroBUS™ line

leddriver_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the LedDriver Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver_cfg_setup ( leddriver_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER_RETVAL leddriver_init ( leddriver_t ctx, leddriver_cfg_t cfg );

Example key functions :

Examples Description

This library contains API for the LED Driver Click driver. This application controls the brightness.

The demo application is composed of two sections :

Application Init

PWM initialization set PWM duty cycle and PWM frequency and start PWM.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver_cfg_setup( &cfg );
    LEDDRIVER_MAP_MIKROBUS( cfg, MIKROBUS_1 );

    if ( LEDDRIVER_OK != leddriver_init( &leddriver, &cfg ) )
    {
        log_info( &logger, "---- Init Error ----" );
        log_info( &logger, "---- Run program again ----" );

        for ( ; ; );
    }

    log_info( &logger, "---- Init Done ----\r\n" );
    leddriver_set_duty_cycle ( &leddriver, 0.0 );
    leddriver_pwm_start( &leddriver );
    Delay_ms ( 100 );
    log_info( &logger, "---- Application Task ----\r\n" );
}

Application Task

This is an example that demonstrates the use of the LED Driver Click board. LED Driver Click communicates with register via PWM interface. This example shows the automatic control halogen bulb light intensity, the first intensity of light is rising and then the intensity of light is falling. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    leddriver_set_duty_cycle ( &leddriver, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 100 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;

}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

2x2 RGB Click

0

2x2 RGB Click is a compact add-on board that contains a matrix of 4 “intelligent” RGB elements, forming a 2x2 display screen. This board features the KTD2052A, a 12-channel RGB LED driver from Kinetic Technologies. It is a fully programmable current regulator for up to four RGB LEDs (12 LEDs in total). The LED matrix consists of four LRTB GFTG, a 6-lead in-line MULTILEDs, from ams OSRAM. The LEDs have a 120-degree viewing angle.

[Learn More]

Solar Energy 2 Click

0

Solar Energy 2 Click is a compact add-on board that can recharge a battery by harvesting the solar power of the Sun or by other means. This board features the EM8500, a power management controller with an energy harvesting interface from EM Microelectronic. The controller is specifically designed for efficient harvesting over various DC sources such as photovoltaic (solar) or thermal electric generators (TEG). It can recharge the connected LiPo battery or supercapacitor (or even a conventional capacitor). In addition, the EM8500 can use the same battery as a power source for powering the connected system.

[Learn More]

LED Ring 2 Click

0

LED Ring 2 Click is a compact add-on board that provides a circular-shaped electronic lighting solution. This board features three I2C-configurable high-performance LED matrix drivers, the LP5862 from Texas Instruments. The LP5862 integrates 18 constant current sinks for driving 18 yellow LEDs. With the help of two additional LP5862 drivers, it is possible to realize, as shown on this board, a solution of 54 yellow LEDs arranged in a circular pattern. In addition, it also provides excellent PWM dimming effects.

[Learn More]