TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Magnetic linear Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 205 times

Not followed.

License: MIT license  

Magnetic linear Click is a very accurate position sensing Click board™ which utilizes the HMC1501, a magnetic field displacement sensor IC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Magnetic linear Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Magnetic linear Click" changes.

Do you want to report abuse regarding "Magnetic linear Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Magnetic linear Click

Magnetic linear Click is a very accurate position sensing Click board™ which utilizes the HMC1501, a magnetic field displacement sensor IC.

magneticlinear_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Magneticlinear Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Magneticlinear Click driver.

Standard key functions :

  • Config Object Initialization function.

    void magneticlinear_cfg_setup ( magneticlinear_cfg_t *cfg );

  • Initialization function.

    MAGNETICLINEAR_RETVAL magneticlinear_init ( magneticlinear_t ctx, magneticlinear_cfg_t cfg );

  • Click Default Configuration function.

    void magneticlinear_default_cfg ( magneticlinear_t *ctx );

Example key functions :

  • This function reads Magnetics Linear data.

    uint16_t magneticlinear_read_data ( magneticlinear_t *ctx );

Examples Description

This application reads magnetics linear data.

The demo application is composed of two sections :

Application Init

Device initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    magneticlinear_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneticlinear_cfg_setup( &cfg );
    MAGNETICLINEAR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneticlinear_init( &magneticlinear, &cfg );
}

Application Task

Reads magnetic linear data and logs it to USB UART every 500ms.


void application_task ( void )
{
    uint16_t magnetic_data;

    magnetic_data = magneticlinear_read_data( &magneticlinear );

    log_printf( &logger, " Magnetic Linear data : %u\r\n", magnetic_data );
    Delay_ms ( 500 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Magneticlinear

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LDC 1101 click

5

LDC1101 click is an inductance-to-digital converter Click Board. It is designed for a range of different applications, based on the inductivity measurements. You can use it to detect the position, rotation, or motion of an object. LDC1101 carries the LDC1101, the integrated, high-resolution, high-speed, inductance-to-digital converter.

[Learn More]

Proximity 2 click

5

Proximity 2 clickâ„¢ features MAX44000, an IC that integrates an ambient light as well as a proximity sensor. The IR proximity detector is matched with an integrated IR LED driver (for the onboard high power infrared LED). Proximity 2 clickâ„¢ communicates with the target board microcontroller through mikroBUS I2C (SCL, SDA), and INT lines.

[Learn More]

Piezo Accel 2 25g Click

0

Piezo Accel 2 Click - 25g is a compact add-on board for precise vibration and motion monitoring in condition-based maintenance applications. This board features the 830M1-0025, a triaxial piezoelectric accelerometer from TE Connectivity, capable of detecting motion and acceleration along all three axes (X, Y, Z). The 830M1-0025 offers a ±25g range with a sensitivity of 50mV/g, providing reliable and accurate analog voltage outputs. It integrates a built-in RTD temperature sensor for simultaneous vibration and temperature monitoring, and the onboard MCP3562R 24-bit ADC converts these signals into high-resolution digital data. Communication is made through an SPI interface with additional interrupt and clock functionality for easy integration with a host MCU.

[Learn More]