TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141706 times)
  2. FAT32 Library (74780 times)
  3. Network Ethernet Library (59224 times)
  4. USB Device Library (49227 times)
  5. Network WiFi Library (45000 times)
  6. FT800 Library (44537 times)
  7. GSM click (31203 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Manometer Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 459 times

Not followed.

License: MIT license  

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Manometer Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Manometer Click" changes.

Do you want to report abuse regarding "Manometer Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Manometer Click

Manometer Click carries a piezoresistive silicon pressure sensor,the HSCMAND060PA3A3 from Honeywell, an industry-leading module with an extremely high accuracy of ±0.25%FSS BFSL.>

manometer_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Manometer Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Manometer Click driver.

Standard key functions :

  • Config Object Initialization function.

    void manometer_cfg_setup ( manometer_cfg_t *cfg );

  • Initialization function.

    MANOMETER_RETVAL manometer_init ( manometer_t ctx, manometer_cfg_t cfg );

Example key functions :

  • Generic write function.

    void manometer_generic_write ( manometer_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • Generic read function.

    void manometer_generic_read ( manometer_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • Function read 16-bit data and convert to pressure in mbar.

    float manometer_get_pressure ( manometer_t *ctx );

Examples Description

This application carries a piezoresistive silicon pressure sensor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - I2C and start write log to Usart Terminal.


void application_init ( void )
{
 log_cfg_t log_cfg;
    manometer_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    manometer_cfg_setup( &cfg );
    MANOMETER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    manometer_init( &manometer, &cfg );
}

Application Task

This is a example which demonstrates the use of Manometer Click board.


void application_task ( void )
{
 float read_data;

    read_data = manometer_get_pressure( &manometer );
    Delay_10ms( );

    log_printf( &logger, " Pressure: %d mbar\r\n", read_data );

    read_data = manometer_get_temperature( &manometer );
    Delay_10ms( );

    log_printf( &logger, " Temperature:  %d C\r\n", read_data );
    log_printf( &logger, "--------------------------\r\n" );

    Delay_1sec( );
    Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Manometer

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Charger 16 Click

0

Charger 16 Click is a compact add-on board that represents a single-cell battery charger. This board features the LT1571, a constant-current/constant-voltage battery charger with preset voltage and termination flag from Analog Devices.

[Learn More]

ANNA-B412 Click

0

ANNA-B412 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the ANNA-B412, a standalone Bluetooth 5.1 low-energy module from u-blox. It is a System-in-Package (SiP) design with pre-flashed u-connectXpress software, which supports Bluetooth LE Serial port service, GATT client and server, Bluetooth beacons, Bluetooth long-range, NFC, and simultaneous peripheral and central roles. The Bluetooth module in LE mode can achieve up to 2Mbps data rates.

[Learn More]

LTE Cat.1-US Click

0

LTE Cat.1-US Click is a Click board™ based on Thales Cinterion® ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks. The best in class solution enables M2M optimized speeds of 10Mbit/s download and 5Mbit/s uplink making it ideal for the vast number of M2M and industrial IoT applications that are not dependent on speed but that requires the longevity of LTE networks, while still providing 3G and 2G connectivity to ensure complete population and geographic coverage as LTE rolls out.

[Learn More]