TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140952 times)
  2. FAT32 Library (73507 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48507 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43685 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

OPTO Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Optocoupler

Downloaded: 295 times

Not followed.

License: MIT license  

OPTO Click is an accessory board in mikroBUS form factor. It features two VO2630 dual channel, high speed optocoupler modules.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "OPTO Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "OPTO Click" changes.

Do you want to report abuse regarding "OPTO Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


OPTO Click

OPTO Click is an accessory board in mikroBUS form factor. It features two VO2630 dual channel, high speed optocoupler modules.

opto_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the OPTO Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for OPTO Click driver.

Standard key functions :

  • Config Object Initialization function.

    void opto_cfg_setup ( opto_cfg_t *cfg );

  • Initialization function.

    OPTO_RETVAL opto_init ( opto_t ctx, opto_cfg_t cfg );

  • Click Default Configuration function.

    void opto_default_cfg ( opto_t *ctx );

Example key functions :

  • Function checks the state of OUT1 pin.

    uint8_t opto_check_out1( opto_t *ctx );

  • Function checks the state of OUT2 pin.

    uint8_t opto_check_out2( opto_t *ctx );

  • Function checks the state of OUT3 pin.

    uint8_t opto_check_out3( opto_t *ctx );

  • Function checks the state of OUT4 pin.

    uint8_t opto_check_out4( opto_t *ctx );

Examples Description

This example checks the state of selected inputs and prints it.

The demo application is composed of two sections :

Application Init

Initialization driver enables GPIO and also starts write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    opto_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    opto_cfg_setup( &cfg );
    OPTO_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    opto_init( &opto, &cfg );
    opto_set_logger(1,1,1,1);
}

Application Task

This example demonstrates the use of OPTO Click board by performing the check procedure for selected outputs and displays the results on USART terminal.


void application_task ( void )
{
    tmp = 1;

    for( cnt = 0; cnt < 4; cnt++ )
    {
        switch ( sel_output & tmp )
        {
            case 0x01 :
            {
                check_output = opto_check_out1( &opto );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT1 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT1 is high\r\n" );
                }
            break;
            }
            case 0x02 :
            {
                check_output = opto_check_out2( &opto );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT2 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT2 is high\r\n" );
                }
            break;
            }
            case 0x04 :
            {
                check_output = opto_check_out3( &opto );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT3 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT3 is high\r\n" );
                }
            break;
            }
            case 0x08 :
            {
                check_output = opto_check_out4( &opto );

                if ( check_output == 0 )
                {
                    log_printf( &logger, "OUT4 is low\r\n" );
                }
                else
                {
                    log_printf( &logger, "OUT4 is high\r\n" );
                }
            break;
            }
            default :
            {
            break;
            }
        }

        tmp <<= 1;
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.OPTO

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC Motor 18 Click

0

DC Motor 18 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TB9051FTG, an automotive PWM-type single-channel H-Bridge DC brushed motor driver from Toshiba Semiconductor.

[Learn More]

PWR Meter 3 30A Click

0

PWR Meter 3 Click - 30A is a compact add-on board that measures voltage and current through the connected load. This board features the ACS37800KMACTR-030B3-I2C, an I2C-configurable power monitoring solution from Allegro MicroSystems, which simplifies the addition of power monitoring to many AC/DC powered systems. The ACS37800KMACLU-090B3-I2C Hall-effect-based current sensing technology achieves reinforced isolation ratings (4800 VRMS) alongside a reliable ±30A bidirectional current sensing. It also has two LED indicators for the realization of visual detection of some anomalies in operation, such as under/overvoltage and fast overcurrent fault detection.

[Learn More]

DC Motor 16 Click

0

DC Motor 16 Click is a compact add-on board that contains a high-performance single phase reversible DC motor drive with speed control. This board features the ZXBM5210, a fully-featured DC motor drive solution with an average current capability of up to 700mA from Diodes Incorporated. The ZXBM5210 has several modes of operations selected by two GPIO pins, has a wide supply voltage range from 3V to 18V, and low power consumption.

[Learn More]